曹工说Redis源码(8)--面试时,redis 内存淘汰总被问,但是总答不好

文章导航#

Redis源码系列的初衷,是帮助我们更好地理解Redis,更懂Redis,而怎么才能懂,光看是不够的,建议跟着下面的这一篇,把环境搭建起来,后续可以自己阅读源码,或者跟着我这边一起阅读。由于我用c也是好几年以前了,些许错误在所难免,希望读者能不吝指出。

曹工说Redis源码(1)-- redis debug环境搭建,使用clion,达到和调试java一样的效果

曹工说Redis源码(2)-- redis server 启动过程解析及简单c语言基础知识补充

曹工说Redis源码(3)-- redis server 启动过程完整解析(中)

曹工说Redis源码(4)-- 通过redis server源码来理解 listen 函数中的 backlog 参数

曹工说Redis源码(5)-- redis server 启动过程解析,以及EventLoop每次处理事件前的前置工作解析(下)

曹工说Redis源码(6)-- redis server 主循环大体流程解析

曹工说Redis源码(7)-- redis server 的周期执行任务,到底要做些啥

什么是内存淘汰#

内存淘汰,和平时我们设置redis key的过期时间,不是一回事;内存淘汰是说,假设我们限定redis只能使用8g内存,现在已经使用了这么多了(包括设置了过期时间的key和没设过期时间的key),那,后续的set操作,还怎么办呢?

是不是只能报错了?

那不行啊,不科学吧,因为有的key,可能已经很久没人用了,可能以后也不会再用到了,那我们是不是可以把这类key给干掉呢?

干掉key的过程,就是内存淘汰。

内存淘汰什么时候启用#

当我们在配置文件里设置了如下属性时:

Copy
# maxmemory <bytes>

默认,该属性是被注释掉的。

其实,这个配置项的注释,相当有价值,我们来看看:

Copy
# Don't use more memory than the specified amount of bytes. # When the memory limit is reached Redis will try to remove keys # according to the eviction policy selected (see maxmemory-policy). # # If Redis can't remove keys according to the policy, or if the policy is # set to 'noeviction', Redis will start to reply with errors to commands # that would use more memory, like SET, LPUSH, and so on, and will continue # to reply to read-only commands like GET. # # This option is usually useful when using Redis as an LRU cache, or to set # a hard memory limit for an instance (using the 'noeviction' policy). # # WARNING: If you have slaves attached to an instance with maxmemory on, # the size of the output buffers needed to feed the slaves are subtracted # from the used memory count, so that network problems / resyncs will # not trigger a loop where keys are evicted, and in turn the output # buffer of slaves is full with DELs of keys evicted triggering the deletion # of more keys, and so forth until the database is completely emptied. # # In short... if you have slaves attached it is suggested that you set a lower # limit for maxmemory so that there is some free RAM on the system for slave # output buffers (but this is not needed if the policy is 'noeviction'). # # maxmemory <bytes>

渣翻译如下:

不能使用超过指定数量bytes的内存。当该内存限制被达到时,redis会根据过期策略(eviction policy,通过参数 maxmemory-policy来指定)来驱逐key。

如果redis根据指定的策略,或者策略被设置为“noeviction”,redis会开始针对如下这种命令,回复错误。什么命令呢?会使用更多内存的那类命令,比如set、lpush;只读命令还是不受影响,可以正常响应。

该选项通常在redis使用LRU缓存时有用,或者在使用noeviction策略时,设置一个进程级别的内存limit。

内存淘汰策略#

所谓策略,意思是,当我们要删除部分key的时候,删哪些,不删哪些?是不是需要一个策略?比如是随机删,就像灭霸一样?还是按照lru时间来删,lru的策略意思就是,最近最少使用的key,将被优先删除。

总之,我们需要定一个规则。

redis默认支持以下策略:

Copy
# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory # is reached. You can select among five behaviors: # # volatile-lru -> remove the key with an expire set using an LRU algorithm # allkeys-lru -> remove any key accordingly to the LRU algorithm # volatile-random -> remove a random key with an expire set # allkeys-random -> remove a random key, any key # volatile-ttl -> remove the key with the nearest expire time (minor TTL) # noeviction -> don't expire at all, just return an error on write operations # # Note: with any of the above policies, Redis will return an error on write # operations, when there are not suitable keys for eviction. # # At the date of writing this commands are: set setnx setex append # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby # getset mset msetnx exec sort # # The default is: # # maxmemory-policy noeviction maxmemory-policy allkeys-lru
Copy
针对设置了过期时间的,使用lru算法 # volatile-lru -> remove the key with an expire set using an LRU algorithm 针对全部key,使用lru算法 # allkeys-lru -> remove any key accordingly to the LRU algorithm 针对设置了过期时间的,随机删 # volatile-random -> remove a random key with an expire set 针对全部key,随机删 # allkeys-random -> remove a random key, any key 针对设置了过期时间的,马上要过期的,删掉 # volatile-ttl -> remove the key with the nearest expire time (minor TTL) 不过期,不能写了,就报错 # noeviction -> don't expire at all, just return an error on write operations

一般呢,我们会设置为:

allkeys-lru,即,针对全部key,进行lru。

源码实现#

配置读取#

在如下结构体中,定义了如下字段:

Copy
struct redisServer { ... unsigned long long maxmemory; /* Max number of memory bytes to use */ int maxmemory_policy; /* Policy for key eviction */ int maxmemory_samples; /* Pricision of random sampling */ ... }

当我们在配置文件中,进入如下配置时,该结构体中几个字段的值如下:

Copy
maxmemory 3mb maxmemory-policy allkeys-lru # maxmemory-samples 5 这个取了默认值

maxmemory_policy为3,是因为枚举值为3:

Copy
#define REDIS_MAXMEMORY_VOLATILE_LRU 0 #define REDIS_MAXMEMORY_VOLATILE_TTL 1 #define REDIS_MAXMEMORY_VOLATILE_RANDOM 2 #define REDIS_MAXMEMORY_ALLKEYS_LRU 3 #define REDIS_MAXMEMORY_ALLKEYS_RANDOM 4 #define REDIS_MAXMEMORY_NO_EVICTION 5 #define REDIS_DEFAULT_MAXMEMORY_POLICY REDIS_MAXMEMORY_NO_EVICTION

处理命令时,判断是否进行内存淘汰#

在处理命令的时候,会调用中的

Copy
redis.c processCommand int processCommand(redisClient *c) { /* The QUIT command is handled separately. Normal command procs will * go through checking for replication and QUIT will cause trouble * when FORCE_REPLICATION is enabled and would be implemented in * a regular command proc. */ // 特别处理 quit 命令 void *commandName = c->argv[0]->ptr; redisLog(REDIS_NOTICE, "The server is now processing %s", commandName); if (!strcasecmp(c->argv[0]->ptr, "quit")) { addReply(c, shared.ok); c->flags |= REDIS_CLOSE_AFTER_REPLY; return REDIS_ERR; } /* Now lookup the command and check ASAP about trivial error conditions * such as wrong arity, bad command name and so forth. */ // 1 查找命令,并进行命令合法性检查,以及命令参数个数检查 c->cmd = c->lastcmd = lookupCommand(c->argv[0]->ptr); if (!c->cmd) { // 没找到指定的命令 flagTransaction(c); addReplyErrorFormat(c, "unknown command '%s'", (char *) c->argv[0]->ptr); return REDIS_OK; } /* Check if the user is authenticated */ //2 检查认证信息 if (server.requirepass && !c->authenticated && c->cmd->proc != authCommand) { flagTransaction(c); addReply(c, shared.noautherr); return REDIS_OK; } /* If cluster is enabled perform the cluster redirection here. * * 3 如果开启了集群模式,那么在这里进行转向操作。 * * However we don't perform the redirection if: * * 不过,如果有以下情况出现,那么节点不进行转向: * * 1) The sender of this command is our master. * 命令的发送者是本节点的主节点 * * 2) The command has no key arguments. * 命令没有 key 参数 */ if (server.cluster_enabled && !(c->flags & REDIS_MASTER) && !(c->cmd->getkeys_proc == NULL && c->cmd->firstkey == 0)) { int hashslot; // 集群已下线 if (server.cluster->state != REDIS_CLUSTER_OK) { flagTransaction(c); addReplySds(c, sdsnew("-CLUSTERDOWN The cluster is down. Use CLUSTER INFO for more information\r\n")); return REDIS_OK; // 集群运作正常 } else { int error_code; clusterNode *n = getNodeByQuery(c, c->cmd, c->argv, c->argc, &hashslot, &error_code); // 不能执行多键处理命令 if (n == NULL) { flagTransaction(c); if (error_code == REDIS_CLUSTER_REDIR_CROSS_SLOT) { addReplySds(c, sdsnew("-CROSSSLOT Keys in request don't hash to the same slot\r\n")); } else if (error_code == REDIS_CLUSTER_REDIR_UNSTABLE) { /* The request spawns mutliple keys in the same slot, * but the slot is not "stable" currently as there is * a migration or import in progress. */ addReplySds(c, sdsnew("-TRYAGAIN Multiple keys request during rehashing of slot\r\n")); } else { redisPanic("getNodeByQuery() unknown error."); } return REDIS_OK; //3.1 命令针对的槽和键不是本节点处理的,进行转向 } else if (n != server.cluster->myself) { flagTransaction(c); // -<ASK or MOVED> <slot> <ip>:<port> // 例如 -ASK 10086 127.0.0.1:12345 addReplySds(c, sdscatprintf(sdsempty(), "-%s %d %s:%d\r\n", (error_code == REDIS_CLUSTER_REDIR_ASK) ? "ASK" : "MOVED", hashslot, n->ip, n->port)); return REDIS_OK; } // 如果执行到这里,说明键 key 所在的槽由本节点处理 // 或者客户端执行的是无参数命令 } } /* Handle the maxmemory directive. * * First we try to free some memory if possible (if there are volatile * keys in the dataset). If there are not the only thing we can do * is returning an error. */ //4 如果设置了最大内存,那么检查内存是否超过限制,并做相应的操作 if (server.maxmemory) { //4.1 如果内存已超过限制,那么尝试通过删除过期键来释放内存 int retval = freeMemoryIfNeeded(); // 如果即将要执行的命令可能占用大量内存(REDIS_CMD_DENYOOM) // 并且前面的内存释放失败的话 // 那么向客户端返回内存错误 if ((c->cmd->flags & REDIS_CMD_DENYOOM) && retval == REDIS_ERR) { flagTransaction(c); addReply(c, shared.oomerr); return REDIS_OK; } } ....
  • 1处,查找命令,对应的函数指针(类似于java里的策略模式,根据命令,找对应的策略)
  • 2处,检查,是否密码正确
  • 3处,集群相关操作;
  • 3.1处,不是本节点处理,直接返回ask,指示客户端转向
  • 4处,判断是否设置了maxMemory,这里就是本文重点:设置了maxMemory时,内存淘汰策略
  • 4.1处,调用了下方的 freeMemoryIfNeeded

接下来,深入4.1处:

Copy
int freeMemoryIfNeeded(void) { size_t mem_used, mem_tofree, mem_freed; int slaves = listLength(server.slaves); /* Remove the size of slaves output buffers and AOF buffer from the * count of used memory. */ // 计算出 Redis 目前占用的内存总数,但有两个方面的内存不会计算在内: // 1)从服务器的输出缓冲区的内存 // 2)AOF 缓冲区的内存 mem_used = zmalloc_used_memory(); if (slaves) { ... } if (server.aof_state != REDIS_AOF_OFF) { mem_used -= sdslen(server.aof_buf); mem_used -= aofRewriteBufferSize(); } /* Check if we are over the memory limit. */ //1 如果目前使用的内存大小比设置的 maxmemory 要小,那么无须执行进一步操作 if (mem_used <= server.maxmemory) return REDIS_OK; //2 如果占用内存比 maxmemory 要大,但是 maxmemory 策略为不淘汰,那么直接返回 if (server.maxmemory_policy == REDIS_MAXMEMORY_NO_EVICTION) return REDIS_ERR; /* We need to free memory, but policy forbids. */ /* Compute how much memory we need to free. */ // 3 计算需要释放多少字节的内存 mem_tofree = mem_used - server.maxmemory; // 初始化已释放内存的字节数为 0 mem_freed = 0; // 根据 maxmemory 策略, //4 遍历字典,释放内存并记录被释放内存的字节数 while (mem_freed < mem_tofree) { int j, k, keys_freed = 0; // 遍历所有字典 for (j = 0; j < server.dbnum; j++) { long bestval = 0; /* just to prevent warning */ sds bestkey = NULL; dictEntry *de; redisDb *db = server.db + j; dict *dict; if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU || server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM) { // 如果策略是 allkeys-lru 或者 allkeys-random //5 那么淘汰的目标为所有数据库键 dict = server.db[j].dict; } else { // 如果策略是 volatile-lru 、 volatile-random 或者 volatile-ttl //6 那么淘汰的目标为带过期时间的数据库键 dict = server.db[j].expires; } /* volatile-random and allkeys-random policy */ // 如果使用的是随机策略,那么从目标字典中随机选出键 if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM || server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_RANDOM) { de = dictGetRandomKey(dict); bestkey = dictGetKey(de); } /* volatile-lru and allkeys-lru policy */ //7 else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU || server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU) { struct evictionPoolEntry *pool = db->eviction_pool; while (bestkey == NULL) { // 8 evictionPoolPopulate(dict, db->dict, db->eviction_pool); /* Go backward from best to worst element to evict. */ for (k = REDIS_EVICTION_POOL_SIZE - 1; k >= 0; k--) { if (pool[k].key == NULL) continue; // 8.1 de = dictFind(dict, pool[k].key); /* 8.2 Remove the entry from the pool. */ sdsfree(pool[k].key); /* Shift all elements on its right to left. */ memmove(pool + k, pool + k + 1, sizeof(pool[0]) * (REDIS_EVICTION_POOL_SIZE - k - 1)); /* Clear the element on the right which is empty * since we shifted one position to the left. */ pool[REDIS_EVICTION_POOL_SIZE - 1].key = NULL; pool[REDIS_EVICTION_POOL_SIZE - 1].idle = 0; /* If the key exists, is our pick. Otherwise it is * a ghost and we need to try the next element. */ // 8.3 if (de) { bestkey = dictGetKey(de); break; } else { /* Ghost... */ continue; } } } } /* volatile-ttl */ // 策略为 volatile-ttl ,从一集 sample 键中选出过期时间距离当前时间最接近的键 else if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_TTL) { ... } /* Finally remove the selected key. */ // 8.4 删除被选中的键 if (bestkey) { long long delta; robj *keyobj = createStringObject(bestkey, sdslen(bestkey)); propagateExpire(db, keyobj); /* We compute the amount of memory freed by dbDelete() alone. * It is possible that actually the memory needed to propagate * the DEL in AOF and replication link is greater than the one * we are freeing removing the key, but we can't account for * that otherwise we would never exit the loop. * * AOF and Output buffer memory will be freed eventually so * we only care about memory used by the key space. */ // 计算删除键所释放的内存数量 delta = (long long) zmalloc_used_memory(); dbDelete(db, keyobj); delta -= (long long) zmalloc_used_memory(); mem_freed += delta; // 对淘汰键的计数器增一 server.stat_evictedkeys++; notifyKeyspaceEvent(REDIS_NOTIFY_EVICTED, "evicted", keyobj, db->id); decrRefCount(keyobj); keys_freed++; ... } } if (!keys_freed) return REDIS_ERR; /* nothing to free... */ } return REDIS_OK; }
  • 1处,如果目前使用的内存大小比设置的 maxmemory 要小,那么无须执行进一步操作

  • 2处,如果占用内存比 maxmemory 要大,但是 maxmemory 策略为不淘汰,那么直接返回

  • 3处,计算需要释放多少字节的内存

  • 4处,遍历字典,释放内存并记录被释放内存的字节数

  • 5处,如果策略是 allkeys-lru 或者 allkeys-random 那么淘汰的目标为所有数据库键

  • 6处,如果策略是 volatile-lru 、 volatile-random 或者 volatile-ttl ,那么淘汰的目标为带过期时间的数据库键

  • 7处,如果使用的是 LRU 策略, 那么从 sample 键中选出 IDLE 时间最长的那个键

  • 8处,调用evictionPoolPopulate,该函数在下面讲解,该函数的功能是,传入一个链表,即这里的db->eviction_pool,然后在函数内部,随机找出n个key,放入传入的链表中,并按照空闲时间排序,空闲最久的,放到最后。

    当该函数,返回后,db->eviction_pool这个链表里就存放了我们要淘汰的key。

  • 8.1处,找到这个key,这个key,在后边会被删除

  • 8.2处,下面这一段,从db->eviction_pool将这个已经处理了的key删掉

  • 8.3处,如果这个key,是存在的,则跳出循环,在后面8.4处,会被删除

  • 8.4处,删除这个key

选择哪些key作为被淘汰的key#

前面我们看到,在7处,如果为lru策略,则会进入8处的函数:

evictionPoolPopulate。

该函数的名称为:填充(populate)驱逐(eviction)对象池(pool)。驱逐的意思,就是现在达到了maxmemory,没办法,只能开始删除掉一部分元素,来腾空间了,不然新的put类型的命令,根本没办法执行。

该方法的大概思路是,使用lru的时候,随机找n个key,类似于抽样,然后放到一个链表,根据空闲时间排序。

具体看看该方法的实现:

Copy
void evictionPoolPopulate(dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {

其中,传入的第三个参数,是要被填充的对象,在c语言中,习惯传入一个入参,然后在函数内部填充或者修改入参对象的属性。

该属性,就是前面说的那个链表,用来存放收集的随机的元素,该链表中节点的结构如下:

Copy
struct evictionPoolEntry { unsigned long long idle; /* Object idle time. */ sds key; /* Key name. */ };

该结构共2个字段,一个存储key,一个存储空闲时间。

该链表中,共maxmemory-samples个元素,会按照idle时间长短排序,idle时间长的在链表尾部,(假设头在左,尾在右)。

Copy
void evictionPoolPopulate(dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) { int j, k, count; dictEntry *_samples[EVICTION_SAMPLES_ARRAY_SIZE]; dictEntry **samples; /* Try to use a static buffer: this function is a big hit... * Note: it was actually measured that this helps. */ if (server.maxmemory_samples <= EVICTION_SAMPLES_ARRAY_SIZE) { samples = _samples; } else { samples = zmalloc(sizeof(samples[0]) * server.maxmemory_samples); } /* 1 Use bulk get by default. */ count = dictGetRandomKeys(sampledict, samples, server.maxmemory_samples); // 2 for (j = 0; j < count; j++) { unsigned long long idle; sds key; robj *o; dictEntry *de; de = samples[j]; key = dictGetKey(de); /* If the dictionary we are sampling from is not the main * dictionary (but the expires one) we need to lookup the key * again in the key dictionary to obtain the value object. */ if (sampledict != keydict) de = dictFind(keydict, key); // 3 o = dictGetVal(de); // 4 idle = estimateObjectIdleTime(o); /* 5 Insert the element inside the pool. * First, find the first empty bucket or the first populated * bucket that has an idle time smaller than our idle time. */ k = 0; while (k < REDIS_EVICTION_POOL_SIZE && pool[k].key && pool[k].idle < idle) k++; ... // 6 pool[k].key = sdsdup(key); pool[k].idle = idle; } if (samples != _samples) zfree(samples); }
  • 1处,获取 server.maxmemory_samples个key,这里是随机获取的,(dictGetRandomKeys),这个值,默认值为5,放到samples中

  • 2处,遍历返回来的samples

  • 3处,调用如下宏,获取val

    he的类型为dictEntry:

    Copy
    /* * 哈希表节点 */ typedef struct dictEntry { // 键 void *key; // 值 union { // 1 void *val; uint64_t u64; int64_t s64; } v; // 指向下个哈希表节点,形成链表 struct dictEntry *next; } dictEntry;

    所以,这里去

    Copy
    robj *o; o = dictGetVal(de);

    实际就是获取其v属性中的val,(1处):

    Copy
    #define dictGetVal(he) ((he)->v.val)
  • 4处,准备计算该val的空闲时间

    我们上面3处,看到,获取的o的类型为robj。我们现在看看怎么计算对象的空闲时长:

    Copy
    /* Given an object returns the min number of milliseconds the object was never * requested, using an approximated LRU algorithm. */ unsigned long long estimateObjectIdleTime(robj *o) { //4.1 获取系统的当前时间 unsigned long long lruclock = LRU_CLOCK(); // 4.2 if (lruclock >= o->lru) { // 4.3 return (lruclock - o->lru) * REDIS_LRU_CLOCK_RESOLUTION; } else { return (lruclock + (REDIS_LRU_CLOCK_MAX - o->lru)) * REDIS_LRU_CLOCK_RESOLUTION; } }

    这里,4.1处,获取系统的当前时间;

    4.2处,如果系统时间,大于对象的lru时间

    4.3处,则用系统时间减去对象的lru时间,再乘以单位,换算为毫秒,最终返回的单位,为毫秒(可以看注释。)

    Copy
    #define REDIS_LRU_CLOCK_RESOLUTION 1000 /* LRU clock resolution in ms */
  • 5处,这里拿当前元素,和pool中已经放进去的元素,从第0个开始比较,如果当前元素的idle时长,大于pool中指针0指向的元素,则和pool中索引1的元素比较;直到条件不满足为止。

    这句话意思就是,类似于冒泡,把当前元素一直往后冒,直到idle时长小于被比较的元素为止。

  • 6处,把当前元素放进pool中。

经过上面的处理后,链表中存放了全部的抽样元素,且ide时间最长的,在最右边。

对象还有字段存储空闲时间?#

前面4处,说到,用系统的当前时间,减去对象的lru时间。

大家看看对象的结构体

Copy
typedef struct redisObject { // 类型 unsigned type:4; // 编码 unsigned encoding:4; //1 对象最后一次被访问的时间 unsigned lru:REDIS_LRU_BITS; /* lru time (relative to server.lruclock) */ // 引用计数 int refcount; // 指向实际值的指针 void *ptr; } robj;

上面1处,lru属性,就是用来存储这个。

创建对象时,直接使用当前系统时间创建#

Copy
robj *createObject(int type, void *ptr) { robj *o = zmalloc(sizeof(*o)); o->type = type; o->encoding = REDIS_ENCODING_RAW; o->ptr = ptr; o->refcount = 1; /*1 Set the LRU to the current lruclock (minutes resolution). */ o->lru = LRU_CLOCK(); return o; }

1处即是。

Copy
robj *createEmbeddedStringObject(char *ptr, size_t len) { robj *o = zmalloc(sizeof(robj)+sizeof(struct sdshdr)+len+1); struct sdshdr *sh = (void*)(o+1); o->type = REDIS_STRING; o->encoding = REDIS_ENCODING_EMBSTR; o->ptr = sh+1; o->refcount = 1; // 1 o->lru = LRU_CLOCK(); sh->len = len; sh->free = 0; if (ptr) { memcpy(sh->buf,ptr,len); sh->buf[len] = '\0'; } else { memset(sh->buf,0,len+1); } return o; }

1处即是。

每次查找该key时,刷新时间#

Copy
robj *lookupKey(redisDb *db, robj *key) { // 查找键空间 dictEntry *de = dictFind(db->dict,key->ptr); // 节点存在 if (de) { // 取出值 robj *val = dictGetVal(de); /* Update the access time for the ageing algorithm. * Don't do it if we have a saving child, as this will trigger * a copy on write madness. */ // 更新时间信息(只在不存在子进程时执行,防止破坏 copy-on-write 机制) if (server.rdb_child_pid == -1 && server.aof_child_pid == -1) // 1 val->lru = LRU_CLOCK(); // 返回值 return val; } else { // 节点不存在 return NULL; } }

1处即是,包括get、set等各种操作,都会刷新该时间。

仔细看下面的堆栈,set的,get同理:

总结#

大家有没有更清楚一些呢?

总的来说,就是,设置了max-memory后,达到该内存限制后,会在处理命令时,检查是否要进行内存淘汰;如果要淘汰,则根据maxmemory-policy的策略来。

随机选择maxmemory-sample个元素,按照空闲时间排序,拉链表;挨个挨个清除。




posted @   三国梦回  阅读(1511)  评论(0编辑  收藏  举报
编辑推荐:
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
阅读排行:
· 周边上新:园子的第一款马克杯温暖上架
· 分享 3 个 .NET 开源的文件压缩处理库,助力快速实现文件压缩解压功能!
· Ollama——大语言模型本地部署的极速利器
· DeepSeek如何颠覆传统软件测试?测试工程师会被淘汰吗?
· 使用C#创建一个MCP客户端
历史上的今天:
2019-06-15 还是Tomcat,关于类加载器的趣味实验
点击右上角即可分享
微信分享提示
CONTENTS