【GreatSQL优化器-15】index merge
【GreatSQL优化器-15】index merge
一、index merge介绍
GreatSQL的优化器的Index Merge Optimization
是查询优化器在处理复杂查询时使用的一种高级技术。当查询的 WHERE 子句中有多个独立的条件,且每个条件都可以使用不同的索引时,优化器会尝试将这些索引合并起来,以提高查询效率。这种优化策略允许数据库在一个查询中同时使用多个索引,从而避免全表扫描或减少需要扫描的数据量。
在某些情况下,单独使用任何一个索引都无法高效地获取到完整的结果集。而通过合并多个索引的扫描结果,我们可以更精确地定位到满足所有条件的记录,从而提高查询效率。当优化器生成mm tree的时候会保存不同索引的tree信息,生成mm tree之后会基于OR或者AND条件进行索引并集合并或者交集合并,从而实现index merge。
下面用一个简单的例子来说明索引合并是什么。
greatsql> CREATE TABLE t1 (c1 INT PRIMARY KEY, c2 INT,date1 DATETIME); greatsql> INSERT INTO t1 VALUES (1,10,'2021-03-25 16:44:00.123456'),(2,1,'2022-03-26 16:44:00.123456'),(3,4,'2023-03-27 16:44:00.123456'),(5,5,'2024-03-25 16:44:00.123456'),(7,null,'2020-03-25 16:44:00.123456'),(8,10,'2020-10-25 16:44:00.123456'),(11,16,'2023-03-25 16:44:00.123456'); greatsql> CREATE TABLE t2 (cc1 INT, cc2 INT,cc3 int); greatsql> INSERT INTO t2 VALUES (1,3,1),(2,1,4),(3,2,10),(4,3,4),(5,15,10),(1,10,3),(4,4,1),(6,4,9),(11,110,1); greatsql> CREATE INDEX idx1 ON t1(c2); greatsql> CREATE INDEX idx2 ON t1(c2,date1); greatsql> CREATE INDEX idx2_1 ON t2(cc1); greatsql> CREATE INDEX idx2_2 ON t2(cc2); greatsql> CREATE INDEX idx2_3 ON t2(cc3); greatsql> explain SELECT * FROM t2 where cc2=3 and cc1=1 and cc3=1; +----+-------------+-------+------------+-------------+----------------------+---------------+---------+------+------+----------+---------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------------+----------------------+---------------+---------+------+------+----------+---------------------------------------------+ | 1 | SIMPLE | t2 | NULL | index_merge | idx2_1,idx2_2,idx2_3 | idx2_1,idx2_2 | 5,5 | NULL | 1 | 33.33 | Using intersect(idx2_1,idx2_2); Using where | 这里用到了索引交集合并 +----+-------------+-------+------------+-------------+----------------------+---------------+---------+------+------+----------+---------------------------------------------+
二、test_quick_select代码解释
首先了解一下ROR的定义,ROR 的含义是 Rowid-Ordered Retrieval,表示单个索引返回的结果集是按照主键有序排列的。索引交集和并集是对ROR的索引进行操作,而如果有非ROR索引的话就要执行排序并集操作。
不是所有涉及不同mm tree的查询最后都会走索引合并,还是要取决于cost大小,有时候全表扫描反而cost更小。例子见下面第三节。
int test_quick_select() { // 先判断skip_scan是否满足条件,不满足的话执行索引合并。skip_scan下一期介绍 AccessPath *skip_scan_path = get_best_skip_scan(); // 不满足skip_scan执行索引合并 if (tree && (best_path == nullptr || !get_forced_by_hint(best_path))) { // 获取is_ror_scan值与table->quick_rows[keynr]区间范围行数,is_ror_scan为true才能执行索引合并,取值见表二 get_key_scans_params(); // 执行索引交集合并,计算cost并跟全表扫描对比,选取cost低的path AccessPath *rori_path = get_best_ror_intersect( thd, ¶m, table, index_merge_intersect_allowed, tree, &needed_fields, best_cost, /*force_index_merge_result=*/true, /*reuse_handler=*/true); // tree->merges在tree_or()的时候赋值,赋值条件见表二 if (!tree->merges.is_empty()) { // 按照不同索引组执行索引并集合并,计算cost并跟全表扫描对比,选取cost低的path for (SEL_IMERGE &imerge : tree->merges) { new_conj_path = get_best_disjunct_quick( thd, ¶m, table, index_merge_union_allowed, index_merge_sort_union_allowed, index_merge_intersect_allowed, skip_records_in_range, &needed_fields, &imerge, best_cost, needed_reg); } } } } // 执行索引交集合并 AccessPath *get_best_ror_intersect() { // 遍历mm tree的索引数组,给tree->ror_scans数组和cpk_scan赋值,cpk_scan专门存放主键索引信息 for (idx = 0, cur_ror_scan = tree->ror_scans; idx < param->keys; idx++) { tree->ror_scans = make_ror_scan(); } // 对tree->ror_scans数组根据覆盖列个数和范围包含的行数进行排序,范围包含的行数越少排序越前。这个步骤排除了主键索引,因为主键在函数最后单独处理 // 排序函数见下面is_better_intersect_match函数 find_intersect_order(tree->ror_scans, tree->ror_scans_end, param, needed_fields); // 按照上面的索引排序顺序进行交集操作,可以减少cost的索引进行交集操作,不能减少的排除 while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering) { // 计算除了主键以外的所有索引的过滤系数、行数、cost并且累加到intersect变量 ror_intersect_add(intersect); } // 计算主键列的过滤系数、行数、cost并与之前别的索引结果累加到intersect变量 if (cpk_scan) ror_intersect_add(intersect); // 最后生成AccessPath AccessPath *path = new (param->return_mem_root) AccessPath; } // 对索引进行排序,可以看到覆盖的列越少,包含的行数越少,排序越靠前 static bool is_better_intersect_match(const ROR_SCAN_INFO *scan1, const ROR_SCAN_INFO *scan2) { if (scan1 == scan2) return false; if (scan1->num_covered_fields_remaining > scan2->num_covered_fields_remaining) return false; if (scan1->num_covered_fields_remaining < scan2->num_covered_fields_remaining) return true; return (scan1->records > scan2->records); } // 执行索引并集合并 static AccessPath *get_best_disjunct_quick() { // 按照索引遍历所有tree for (auto tree_it = imerge->trees.begin(); tree_it != imerge->trees.end(); ++tree_it, cur_child++) { // 获取is_ror_scan值与table->quick_rows[keynr]区间范围行数,is_ror_scan为true才能执行索引合并,取值见表二 get_key_scans_params(); } // 如果所有索引都是ROR的,那么直接返回结果 if (all_scans_rors && (index_merge_union_allowed || force_index_merge)) return get_ror_union_path(); // 如果不是所有索引都是ROR的,那么需要执行Sort-Union // 首先计算磁盘扫描的cost get_sweep_read_cost(); // 如果扫描磁盘cost太大,那么继续执行Sort-Union // 索引去重cost估计 dup_removal_cost = Unique::get_use_cost( (uint)non_cpk_scan_records, table->file->ref_length, // 这个系统变量见表七 thd->variables.sortbuff_size, cost_model); // 执行索引Sort-Union get_ror_union_path(); } static AccessPath *get_ror_union_path() { // 遍历所有tree元素,对每个元素执行Intersection Merge for (auto tree_it = imerge->trees.begin(); tree_it != imerge->trees.end(); tree_it++, cur_child++, cur_roru_plan++) { get_best_ror_intersect(); } // 计算磁盘扫描cost get_sweep_read_cost(); // 生成AccessPath,这个AccessPath带有child即Intersection Merge的索引子集 AccessPath *path = new (param->return_mem_root) AccessPath; path->rowid_union().children = children; }
表一:索引合并类型
索引合并类型 | 说明 | 对应代码 | 举例 |
---|---|---|---|
交集合并(Intersection Merge) | 当查询需要满足多个条件(使用 AND 连接),并且每个条件都可以使用不同的索引时,分别扫描这些索引,然后取结果的交集。原则是通过mm tree能找到唯一的那条数据的时候才执行交集 | get_best_ror_intersect() | ROR条件 and ROR条件 |
并集合并(Union Merge) | 查询可能只需要满足多个条件中的任意一个(使用 OR 连接)。分别扫描这些索引,然后取结果的并集。被合并的子集也可以是索引交集比如union(intersect(),intersect()),例子见下面 | get_best_disjunct_quick() | ROR条件 or ROR条件 |
排序并集合并(Sort-Union Merge) | 需要对结果进行排序,并且排序的字段也有索引时。分别扫描索引,然后合并并排序结果。这个cost在三者中最大因为要排序 | get_best_disjunct_quick() 排序执行过程:通过IndexMergeIterator::Init()的unique->unique_add进行排序 | 非ROR条件 OR 非ROR条件,比如有非唯一索引列范围条件,where key1 < 3 or key2 > 1020 |
表二:is_ror_scan取值情况
条件 | is_ror_scan值 | 赋值的函数 | 说明 |
---|---|---|---|
赋初始值 | !(file->index_flags(keynr, 0, true) & HA_KEY_SCAN_NOT_ROR) | check_quick_select() | 初值 |
索引是倒序的 | false | check_quick_select() | |
索引类型不等于SE_SPECIFIC和BTREE或者索引包含虚拟列 | false | check_quick_select() | |
索引是主键列 | true | check_quick_select() | |
列的第二个以上条件有右节点 | false | sel_arg_range_seq_next() | 见下面例子 |
tree叶节点范围最大值和最小值不相等 | false | sel_arg_range_seq_next() | 见下面例子 |
不是等号条件或者不为is_key_scan_ror() | false | sel_arg_range_seq_next() | 等于条件的is_ror_scan=true is_key_scan_ror()比较索引列长度和插入数据的长度,不一致的话就返回false。比如创建索引字符集和插入数据的字符集不一致就会导致该列无法用index merge。 |
注:is_ror_scan原则就是通过条件可以确定唯一的位置,这就是ROR有序的含义
表三:tree->merges数组赋值条件
条件(以下必须全部满足) | 举例 |
---|---|
不同索引的OR条件 | where d2<5 or d1=10,这两个条件涉及2个不同索引 |
两个SEL_TREE不能被合并 | where (d2=5 and d1=5) or (d2=4),这两个OR条件里面带有相同的索引d2,因此不能加入merges数组 |
表四:不同索引合并方法行数计算方法
索引合并类型 | 公式 |
---|---|
交集合并(Intersection Merge) | 总行数 * (第1个索引范围对应的行数 / 总行数) * (第2个索引范围对应的行数 / 总行数) ... |
并集合并(Union Merge) | 第1个索引范围对应的行数+第2个索引范围对应的行数 ... |
排序并集合并(Sort-Union Merge) | 第1个索引范围对应的行数+第2个索引范围对应的行数 ... |
表五:跟索引合并相关的OPTIMIZER_SWITCH
OPTIMIZER_SWITCH | 默认 | 说明 |
---|---|---|
OPTIMIZER_SWITCH_INDEX_MERGE | ON | 可以在多个索引上进行查询,并将结果合并返回。 |
OPTIMIZER_SWITCH_INDEX_MERGE_UNION | OFF | 会在使用到的多个索引上同时进行扫描,并取这些扫描结果的并集作为最终结果集。 |
OPTIMIZER_SWITCH_INDEX_MERGE_SORT_UNION | ON | 比单纯的Union索引合并多了一步对二级索引记录的主键id排序的过程。 |
OPTIMIZER_SWITCH_INDEX_MERGE_INTERSECT | ON | 会在使用到的多个索引上同时进行扫描,并取这些扫描结果的交集作为最终结果集。 |
表六:索引扫描类型
类型 | 说明 | trace显示 |
---|---|---|
INDEX_RANGE_SCAN | 范围扫描 | range_scan |
INDEX_MERGE | 排序并集合并模式 | index_merge |
ROWID_INTERSECTION | 交集合并模式 | index_roworder_intersect |
ROWID_UNION | 并集合并模式 | index_roworder_union |
INDEX_SKIP_SCAN | 使用skip scan方式进行范围扫描,当要查询的列都在索引中时,即使where中的条件不是索引的第一部分,也可以使用索引。 | skip_scan |
GROUP_INDEX_SKIP_SCAN | 用于group by的索引跳跃 | index_group |
表七:涉及的系统变量
系统变量 | 说明 |
---|---|
thd->variables.sortbuff_size | 用在索引Sort-Union操作的时候对索引进行排序去重估计cost |
OPTIMIZER_SWITCH_FAVOR_RANGE_SCAN | 索引合并执行在get_key_scans_params()的时候,如果这个设置为true,那么会对rows对应算出来的cost乘以系数0.1,让cost结果小十倍,这样结果就不会走索引合并而走RANGE_SCAN,见下面例子 |
三、实际例子说明
接下来看几个例子来说明上面的代码。
交集合并
greatsql> EXPLAIN SELECT * FROM t1 where c2=10 and c1<10; +----+-------------+-------+------------+-------------+-------------------+--------------+---------+------+------+----------+--------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------------+-------------------+--------------+---------+------+------+----------+--------------------------------------------+ | 1 | SIMPLE | t1 | NULL | index_merge | PRIMARY,idx1,idx2 | idx1,PRIMARY | 9,4 | NULL | 1 | 58.33 | Using intersect(idx1,PRIMARY); Using where | +----+-------------+-------+------------+-------------+-------------------+--------------+---------+------+------+----------+--------------------------------------------+ "analyzing_range_alternatives": { "range_scan_alternatives": [ { "index": "PRIMARY", "ranges": [ "c1 < 10" ], "index_dives_for_eq_ranges": true, "rowid_ordered": true, 这里为true说明这个索引是ROR的 "using_mrr": false, "index_only": false, "in_memory": 1, "rows": 6, "cost": 0.861465, "chosen": true }, { "index": "idx1", "ranges": [ "c2 = 10 AND c1 < 10" ], "index_dives_for_eq_ranges": true, "rowid_ordered": true, 这里为true说明这个索引是ROR的 "using_mrr": false, "index_only": false, "in_memory": 1, "rows": 2, "cost": 0.96, "chosen": false, "cause": "cost" }, { "index": "idx2", "ranges": [ "c2 = 10" ], "index_dives_for_eq_ranges": true, "rowid_ordered": false, 这里为false说明这个索引不可以被合并 "using_mrr": false, "index_only": true, "in_memory": 0, "rows": 2, "cost": 1.21183, "chosen": false, "cause": "cost" } ], "analyzing_roworder_intersect": { "intersecting_indexes": [ 上面"rowid_ordered"数量加起来为2,因此可以执行索引交集 { "index": "idx1", "index_scan_cost": 0.250274, 满足c2 = 10行数2条,这个是对应2条的cost "cumulated_index_scan_cost": 0.250274, "disk_sweep_cost": 0.4375, 从硬盘读取数据的cost "cumulated_total_cost": 0.687774, 这个值=index_scan_cost+disk_sweep_cost "usable": true, "matching_rows_now": 2, "isect_covering_with_this_index": false, "chosen": true } ], "clustered_pk": { "index_scan_cost": 0.1, "cumulated_index_scan_cost": 0.350274, 这个值=index_scan_cost+上一个cumulated_index_scan_cost "disk_sweep_cost": 0.25, "clustered_pk_scan_added_to_intersect": true, "cumulated_cost": 0.600274 这个值=disk_sweep_cost+cumulated_index_scan_cost,这里取两个索引交集以后的cost小于单独用idx1索引的cost 0.687774,说明索引交集确实提高了效率 }, "rows": 1.71429, 这个值=索引行数 * 过滤系数 =7 * 2/7 * 6/7,其中2是满足idx1条件c2=10的行数,6是满足主键列c1<10的行数 "cost": 0.600274, "covering": false, "chosen": true } }, "chosen_range_access_summary": { "range_access_plan": { "type": "index_roworder_intersect", "rows": 1.71429, "cost": 0.600274, "covering": false, "clustered_pk_scan": true, "intersect_of": [ { "type": "range_scan", "index": "idx1", "rows": 2, "ranges": [ "c2 = 10 AND c1 < 10" ] } ] }, "rows_for_plan": 1.71429, "cost_for_plan": 0.600274, "chosen": true } } } { "considered_execution_plans": [ { "plan_prefix": [ ], "table": "`t1`", "best_access_path": { "considered_access_paths": [ { "access_type": "ref", "index": "idx1", "chosen": false, "cause": "range_uses_more_keyparts" }, { "access_type": "ref", 这个是因为keyuse_array数组有值,所以根据索引单独计算 "index": "idx2", "rows": 2, "cost": 1.20183, "chosen": true }, { "rows_to_scan": 1, 这个值等于上面索引交集算出来的"rows_for_plan": 1.71429 "filtering_effect": [ ], "final_filtering_effect": 1, "access_type": "range", "range_details": { "used_index": "intersect(idx1,PRIMARY)" }, "resulting_rows": 1, 这个值等于"rows_to_scan" "cost": 0.700274, "chosen": true } ] }, "condition_filtering_pct": 100, "rows_for_plan": 1, "cost_for_plan": 0.700274, 最后结果:在上面ref和range两种方法中选择了cost低的range方法即索引交集方法 "chosen": true } ] },
并集合并
greatsql> CREATE TABLE t4 (d1 INT, d2 int, d3 varchar(100)); greatsql> INSERT INTO t4 VALUES (1,2,'aa1'),(2,1,'bb1'),(2,3,'cc1'),(3,3,'cc1'),(4,2,'ff1'),(4,4,'ert'),(4,2,'f5fg'),(null,2,'ee'),(5,30,'cc1'),(5,4,'fcc1'),(4,10,'cc1'),(6,4,'ccd1'),(null,1,'fee'),(1,2,'aa1'),(2,1,'bb1'),(2,3,'cc1'),(3,3,'cc1'),(4,2,'ff1'),(4,4,'ert'),(4,2,'f5fg'),(null,2,'ee'),(5,30,'cc1'),(5,4,'fcc1'),(4,10,'cc1'),(6,4,'ccd1'),(null,1,'fee'),(1,2,'aa1'),(2,1,'bb1'),(2,3,'cc1'),(3,3,'cc1'),(4,2,'ff1'),(4,4,'ert'),(4,2,'f5fg'),(null,2,'ee'),(5,30,'cc1'),(5,4,'fcc1'),(4,10,'cc1'),(6,4,'ccd1'),(null,1,'fee'); greatsql> CREATE INDEX idx4_1 ON t4(d1); greatsql> CREATE INDEX idx4_2 ON t4(d2); greatsql> EXPLAIN SELECT * FROM t4 where d2=4 or d1=10; +----+-------------+-------+------------+-------------+---------------+---------------+---------+------+------+----------+-----------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------------+---------------+---------------+---------+------+------+----------+-----------------------------------------+ | 1 | SIMPLE | t4 | NULL | index_merge | idx4_2,idx4_1 | idx4_2,idx4_1 | 5,5 | NULL | 10 | 100.00 | Using union(idx4_2,idx4_1); Using where | +----+-------------+-------+------------+-------------+---------------+---------------+---------+------+------+----------+-----------------------------------------+ "analyzing_range_alternatives": { "range_scan_alternatives": [ ], "analyzing_roworder_intersect": { "usable": false, "cause": "too_few_roworder_scans" } }, "analyzing_index_merge_union": [ { "indexes_to_merge": [ { "range_scan_alternatives": [ { "index": "idx4_2", "ranges": [ "d2 = 4" ], "index_dives_for_eq_ranges": true, "rowid_ordered": true, 这里为true说明这个索引是ROR的 "using_mrr": false, "index_only": true, "in_memory": 0, "rows": 9, "cost": 1.92074, "chosen": true } ], "index_to_merge": "idx4_2", "cumulated_cost": 1.92074 }, { "range_scan_alternatives": [ { "index": "idx4_1", "ranges": [ "d1 = 10" ], "index_dives_for_eq_ranges": true, "rowid_ordered": true, 这里为true说明这个索引是ROR的 "using_mrr": false, "index_only": true, "in_memory": 0, "rows": 1, "cost": 1.11, "chosen": true } ], "index_to_merge": "idx4_1", "cumulated_cost": 3.03074 这个值=idx4_1索引对应的cost+idx4_2索引对应的cost=1.11+1.92074 } ], "cost_of_reading_ranges": 3.03074, "use_roworder_union": true, "cause": "always_cheaper_than_not_roworder_retrieval", "analyzing_roworder_scans": [ { "type": "range_scan", "index": "idx4_2", "rows": 9, "ranges": [ "d2 = 4" ], "analyzing_roworder_intersect": { "usable": false, "cause": "too_few_roworder_scans" } }, { "type": "range_scan", "index": "idx4_1", "rows": 1, "ranges": [ "d1 = 10" ], "analyzing_roworder_intersect": { "usable": false, "cause": "too_few_roworder_scans" } } ], "index_roworder_union_cost": 4.47442, "members": 2, 涉及2个索引 "chosen": true } ], "chosen_range_access_summary": { "range_access_plan": { "type": "index_roworder_union", "union_of": [ { "type": "range_scan", "index": "idx4_2", "rows": 9, "ranges": [ "d2 = 4" ] }, { "type": "range_scan", "index": "idx4_1", "rows": 1, "ranges": [ "d1 = 10" ] } ] }, "rows_for_plan": 10, "cost_for_plan": 4.47442, "chosen": true } } } ] },
排序合并
greatsql> EXPLAIN SELECT * FROM t4 WHERE d1 < 2 OR d2 > 20; +----+-------------+-------+------------+-------------+---------------+---------------+---------+------+------+----------+----------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------------+---------------+---------------+---------+------+------+----------+----------------------------------------------+ | 1 | SIMPLE | t4 | NULL | index_merge | idx4_2,idx4_1 | idx4_1,idx4_2 | 5,5 | NULL | 6 | 100.00 | Using sort_union(idx4_1,idx4_2); Using where | +----+-------------+-------+------------+-------------+---------------+---------------+---------+------+------+----------+----------------------------------------------+ "analyzing_range_alternatives": { "range_scan_alternatives": [ ], "analyzing_roworder_intersect": { "usable": false, "cause": "too_few_roworder_scans" } }, "analyzing_index_merge_union": [ { "indexes_to_merge": [ { "range_scan_alternatives": [ { "index": "idx4_1", "ranges": [ "NULL < d1 < 2" ], "index_dives_for_eq_ranges": true, "rowid_ordered": false, 这里说明这个不是ROR索引,因为条件是一个范围不是等于 "using_mrr": false, "index_only": true, "in_memory": 1, "rows": 3, "cost": 0.560671, "chosen": true } ], "index_to_merge": "idx4_1", "cumulated_cost": 0.560671 }, { "range_scan_alternatives": [ { "index": "idx4_2", "ranges": [ "20 < d2" ], "index_dives_for_eq_ranges": true, "rowid_ordered": false, 这里说明这个不是ROR索引,因为条件是一个范围不是等于 "using_mrr": false, "index_only": true, "in_memory": 1, "rows": 3, "cost": 0.560671, "chosen": true } ], "index_to_merge": "idx4_2", "cumulated_cost": 1.12134 这个值=两个索引累加=0.560671+0.560671 } ], "cost_of_reading_ranges": 1.12134, "cost_sort_rowid_and_read_disk": 0.822021, 磁盘扫描的cost "cost_duplicate_removal": 1.2282, 索引排序去重cost "total_cost": 3.17157 } ], "chosen_range_access_summary": { "range_access_plan": { "type": "index_merge", "index_merge_of": [ { "type": "range_scan", "index": "idx4_1", "rows": 3, "ranges": [ "NULL < d1 < 2" ] }, { "type": "range_scan", "index": "idx4_2", "rows": 3, "ranges": [ "20 < d2" ] } ] }, "rows_for_plan": 6, "cost_for_plan": 3.17157, "chosen": true } } } ] },
上面的例子改一个条件范围,结果变成不选择排序合并而选择全表扫描的情况。下面trace对比上面发现,少了"chosen_range_access_summary"
,对比源码发现是imerge_cost > read_cost
,因此被放弃。这里主要原因是索引排序cost太高所以放弃了。
greatsql> EXPLAIN SELECT * FROM t4 WHERE d1 < 4 OR d2 > 20; +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+ | 1 | SIMPLE | t4 | NULL | ALL | idx4_2,idx4_1 | NULL | NULL | NULL | 39 | 53.84 | Using where | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+ { "rows_estimation": [ { "table": "`t4`", "range_analysis": { "table_scan": { "rows": 39, "cost": 6.25 这个是全表扫描的cost }, "analyzing_index_merge_union": [ { "indexes_to_merge": [ { "range_scan_alternatives": [ { "index": "idx4_1", "ranges": [ "NULL < d1 < 4" ], "index_dives_for_eq_ranges": true, "rowid_ordered": false, "using_mrr": false, "index_only": true, "in_memory": 1, "rows": 12, "cost": 1.46369, "chosen": true } ], "index_to_merge": "idx4_1", "cumulated_cost": 1.46369 }, { "range_scan_alternatives": [ { "index": "idx4_2", "ranges": [ "20 < d2" ], "index_dives_for_eq_ranges": true, "rowid_ordered": false, "using_mrr": false, "index_only": true, "in_memory": 1, "rows": 3, "cost": 0.560671, "chosen": true } ], "index_to_merge": "idx4_2", "cumulated_cost": 2.02436 } ], "cost_of_reading_ranges": 2.02436, "cost_sort_rowid_and_read_disk": 0.986637, "cost_duplicate_removal": 4.42426, "total_cost": 7.43526 索引合并cost大于全表扫描cost的6.25,因此不选择用索引合并 } ] } } ] },
无法使用index merge
交集合并的情况
列的第二个以上条件有右节点 greatsql> EXPLAIN SELECT * FROM t4 WHERE d2>=2 AND (d2>=6 or d2=4); +----+-------------+-------+------------+-------+---------------+--------+---------+------+------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+--------+---------+------+------+----------+-----------------------+ | 1 | SIMPLE | t4 | NULL | range | idx4_2 | idx4_2 | 5 | NULL | 15 | 100.00 | Using index condition | +----+-------------+-------+------------+-------+---------------+--------+---------+------+------+----------+-----------------------+ tree叶节点范围最大值和最小值不相等 greatsql> EXPLAIN SELECT * FROM t1 WHERE c1>=2 AND c2>=2 AND c2<=11; +----+-------------+-------+------------+-------+-------------------+------+---------+------+------+----------+--------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+-------------------+------+---------+------+------+----------+--------------------------+ | 1 | SIMPLE | t1 | NULL | range | PRIMARY,idx1,idx2 | idx2 | 5 | NULL | 4 | 85.71 | Using where; Using index | +----+-------------+-------+------------+-------+-------------------+------+---------+------+------+----------+--------------------------+
多个索引与索引交集的选择
greatsql> CREATE TABLE t5 (d1 INT, d2 int, d3 int, d4 int, d5 int); greatsql> INSERT INTO t5 VALUES (1,2,1,2,4),(2,1,1,2,1),(2,3,6,9,10),(3,3,2,1,5),(4,2,9,22,4),(4,4,2,1,3),(4,2,7,3,5); greatsql> create index idx4_1 on t5(d1); greatsql> CREATE INDEX idx4_2 ON t5(d2); greatsql> CREATE INDEX idx4_3 ON t5(d3); greatsql> CREATE INDEX idx4_4 ON t5(d4); greatsql> CREATE INDEX idx4_5 ON t5(d5); greatsql> EXPLAIN SELECT * FROM t5 where d2=2 and d4=2 and d3=1 ; +----+-------------+-------+------------+-------------+----------------------+---------------+---------+------+------+----------+---------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------------+----------------------+---------------+---------+------+------+----------+---------------------------------------------+ | 1 | SIMPLE | t5 | NULL | index_merge | idx4_2,idx4_3,idx4_4 | idx4_3,idx4_4 | 5,5 | NULL | 1 | 42.86 | Using intersect(idx4_3,idx4_4); Using where | +----+-------------+-------+------------+-------------+----------------------+---------------+---------+------+------+----------+---------------------------------------------+ 这个sql通过find_intersect_order函数排序结果为idx4_3、idx4_4、idx4_2,因为idx4_3和idx4_4的rows都是2,但是因为idx4_3在sql位置靠前因此排序靠前。而idx4_2包含的rows是3,因此位置在最后。 "analyzing_range_alternatives": { "range_scan_alternatives": [ { "index": "idx4_2", "ranges": [ "d2 = 2" ], "index_dives_for_eq_ranges": true, "rowid_ordered": true, "using_mrr": false, "index_only": false, "in_memory": 1, "rows": 3, "cost": 1.31, "chosen": true }, { "index": "idx4_3", "ranges": [ "d3 = 1" ], "index_dives_for_eq_ranges": true, "rowid_ordered": true, "using_mrr": false, "index_only": false, "in_memory": 1, "rows": 2, "cost": 0.96, "chosen": true }, { "index": "idx4_4", "ranges": [ "d4 = 2" ], "index_dives_for_eq_ranges": true, "rowid_ordered": true, "using_mrr": false, "index_only": false, "in_memory": 1, "rows": 2, "cost": 0.96, "chosen": false, "cause": "cost" } ], "analyzing_roworder_intersect": { "intersecting_indexes": [ { "index": "idx4_3", "index_scan_cost": 0.250336, "cumulated_index_scan_cost": 0.250336, "disk_sweep_cost": 0.4375, "cumulated_total_cost": 0.687836, "usable": true, "matching_rows_now": 2, "isect_covering_with_this_index": false, "chosen": true }, { "index": "idx4_4", "index_scan_cost": 0.250336, "cumulated_index_scan_cost": 0.500671, "disk_sweep_cost": 0, "cumulated_total_cost": 0.500671, "usable": true, "matching_rows_now": 0.571429, "isect_covering_with_this_index": false, "chosen": true 合并完idx4_3和idx4_4以后发现cost变小,因此可以选择 }, { "index": "idx4_2", "index_scan_cost": 0.250671, "cumulated_index_scan_cost": 0.751342, "disk_sweep_cost": 0, "cumulated_total_cost": 0.751342, "usable": true, "matching_rows_now": 0.244898, "isect_covering_with_this_index": false, "chosen": false, "cause": "does_not_reduce_cost" 这里合并到idx4_2就发现cost大于单独用前两个索引,因此不继续进行交集操作了 } ], "clustered_pk": { "clustered_pk_added_to_intersect": false, "cause": "no_clustered_pk_index" }, "rows": 1, "cost": 0.500671, "covering": false, "chosen": true }
索引并集合并的子集是索引交集的情况
greatsql> EXPLAIN SELECT * FROM t5 WHERE (d2=4 AND d1=4 ) OR (d3=1 AND d4=2); +----+-------------+-------+------------+-------------+-----------------------------+----------------------+---------+------+------+----------+-----------------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------------+-----------------------------+----------------------+---------+------+------+----------+-----------------------------------------------------------+ | 1 | SIMPLE | t5 | NULL | index_merge | idx4_1,idx4_2,idx4_3,idx4_4 | idx4_2,idx4_3,idx4_4 | 5,5,5 | NULL | 2 | 100.00 | Using union(idx4_2,intersect(idx4_3,idx4_4)); Using where | 这里的子集没用idx4_1和idx4_2的交集,因为加上idx4_1以后的cost比单独用idx4_2还要大,因此idx4_1和idx4_2不使用索引交集 +----+-------------+-------+------------+-------------+-----------------------------+----------------------+---------+------+------+----------+-----------------------------------------------------------+
OPTIMIZER_SWITCH_FAVOR_RANGE_SCAN
使用举例
greatsql> EXPLAIN SELECT * FROM t5 WHERE d2=2 AND d4=2 AND d3=1; +----+-------------+-------+------------+-------------+----------------------+---------------+---------+------+------+----------+---------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------------+----------------------+---------------+---------+------+------+----------+---------------------------------------------+ | 1 | SIMPLE | t5 | NULL | index_merge | idx4_2,idx4_3,idx4_4 | idx4_3,idx4_4 | 5,5 | NULL | 1 | 42.86 | Using intersect(idx4_3,idx4_4); Using where | +----+-------------+-------+------------+-------------+----------------------+---------------+---------+------+------+----------+---------------------------------------------+ 加上FAVOR_RANGE_SCAN以后看到结果变为走单个索引而不走索引合并了。 greatsql> EXPLAIN SELECT /*+ set_var(optimizer_switch='FAVOR_RANGE_SCAN=ON') */ * FROM t5 WHERE d2=2 AND d4=2 AND d3=1; +----+-------------+-------+------------+------+----------------------+--------+---------+-------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+----------------------+--------+---------+-------+------+----------+-------------+ | 1 | SIMPLE | t5 | NULL | ref | idx4_2,idx4_3,idx4_4 | idx4_3 | 5 | const | 2 | 14.29 | Using where | +----+-------------+-------+------------+------+----------------------+--------+---------+-------+------+----------+-------------+ 下面的trace可以看到每个单独的索引的cost都被改小十倍,这样后面执行索引合并的时候对比这个cost就会偏大,导致最后走单个索引而不是索引合并。 "analyzing_range_alternatives": { "range_scan_alternatives": [ { "index": "idx4_2", "ranges": [ "d2 = 2" ], "index_dives_for_eq_ranges": true, "rowid_ordered": true, "using_mrr": false, "index_only": false, "in_memory": 1, "rows": 3, "cost": 1.31, "revised_cost": 0.131, 这个地方修改了cost值,变为cost * 0.1 = 1.31 * 0.1 "chosen": true }, { "index": "idx4_3", "ranges": [ "d3 = 1" ], "index_dives_for_eq_ranges": true, "rowid_ordered": true, "using_mrr": false, "index_only": false, "in_memory": 1, "rows": 2, "cost": 0.96, "revised_cost": 0.096, 这个地方修改了cost值,变为cost * 0.1 = 1.31 * 0.1 "chosen": true }, { "index": "idx4_4", "ranges": [ "d4 = 2" ], "index_dives_for_eq_ranges": true, "rowid_ordered": true, "using_mrr": false, "index_only": false, "in_memory": 1, "rows": 2, "cost": 0.96, "revised_cost": 0.096, 这个地方修改了cost值,变为cost * 0.1 = 1.31 * 0.1 "chosen": false, "cause": "cost" } ], "analyzing_roworder_intersect": { "intersecting_indexes": [ { "index": "idx4_3", "index_scan_cost": 0.250336, "cumulated_index_scan_cost": 0.250336, "disk_sweep_cost": 0.4375, "cumulated_total_cost": 0.687836, "usable": true, "matching_rows_now": 2, "isect_covering_with_this_index": false, "chosen": true }, { "index": "idx4_4", "index_scan_cost": 0.250336, "cumulated_index_scan_cost": 0.500671, "disk_sweep_cost": 0, "cumulated_total_cost": 0.500671, "usable": true, "matching_rows_now": 0.571429, "isect_covering_with_this_index": false, "chosen": true }, { "index": "idx4_2", "index_scan_cost": 0.250671, "cumulated_index_scan_cost": 0.751342, "disk_sweep_cost": 0, "cumulated_total_cost": 0.751342, "usable": true, "matching_rows_now": 0.244898, "isect_covering_with_this_index": false, "chosen": false, "cause": "does_not_reduce_cost" } ], "clustered_pk": { "clustered_pk_added_to_intersect": false, "cause": "no_clustered_pk_index" }, "chosen": false, 索引合并cost大于idx4_3,因此没有选择索引合并 "cause": "cost" } }, "chosen_range_access_summary": { 最后结果选了cost最小的idx4_3,因为cost最小 "range_access_plan": { "type": "range_scan", "index": "idx4_3", "rows": 2, "ranges": [ "d3 = 1" ] }, "rows_for_plan": 2, "cost_for_plan": 0.096, "chosen": true } } }
四、总结
从上面索引合并的应用例子我们认识了索引合并的使用场合和好处,也知道了索引合并的三种类型以及分别使用的条件,认识了ROR条件的判定和使用,还有相关系统变量,以上选择都是系统自动选择的,如果要改变结果只能添加OPTIMIZER_SWITCH
强制改变索引的使用。
Enjoy GreatSQL 😃
关于 GreatSQL
GreatSQL是适用于金融级应用的国内自主开源数据库,具备高性能、高可靠、高易用性、高安全等多个核心特性,可以作为MySQL或Percona Server的可选替换,用于线上生产环境,且完全免费并兼容MySQL或Percona Server。
相关链接: GreatSQL社区 Gitee GitHub Bilibili
GreatSQL社区:
社区博客有奖征稿详情:https://greatsql.cn/thread-100-1-1.html
技术交流群:
微信:扫码添加
GreatSQL社区助手
微信好友,发送验证信息加群
。
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek “源神”启动!「GitHub 热点速览」
· 我与微信审核的“相爱相杀”看个人小程序副业
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· C# 集成 DeepSeek 模型实现 AI 私有化(本地部署与 API 调用教程)
· spring官宣接入deepseek,真的太香了~
2022-02-21 MySQL主从复制之半同步(semi-sync replication)