MySQL运行时的可观测性
-
1.说在前面的话
-
2.安装employees测试库
-
3.观测SQL运行状态
-
- 3.1 观测SQL运行时的内存消耗
- 3.2 观测SQL运行时的其他开销
- 3.3 观测SQL运行进度
感知SQL运行时的状态
1. 说在前面的话
在MySQL里,一条SQL运行时产生多少磁盘I/O,占用多少内存,是否有创建临时表,这些指标如果都能观测到,有助于更快发现SQL瓶颈,扑灭潜在隐患。
从MySQL 5.7版本开始,performance_schema
就默认启用了,并且还增加了sys schema
,到了8.0版本又进一步得到增强提升,在SQL运行时就能观察到很多有用的信息,实现一定程度的可观测性。
下面举例说明如何进行观测,以及主要观测哪些指标。
2. 安装employees测试库
安装MySQL官方提供的employees
测试数据库,戳此链接(https://dev.mysql.com/doc/index-other.html)下载,解压缩后开始安装:
$ mysql -f < employees.sql; INFO CREATING DATABASE STRUCTURE INFO storage engine: InnoDB INFO LOADING departments INFO LOADING employees INFO LOADING dept_emp INFO LOADING dept_manager INFO LOADING titles INFO LOADING salaries data_load_time_diff 00:00:37
MySQL还提供了相应的使用文档:https://dev.mysql.com/doc/employee/en/
本次测试采用GreatSQL 8.0.32-24版本,且运行在MGR环境中:
greatsql> \s ... Server version: 8.0.32-24 GreatSQL, Release 24, Revision 3714067bc8c ... greatsql> select MEMBER_ID, MEMBER_ROLE, MEMBER_VERSION from performance_schema.replication_group_members; +--------------------------------------+-------------+----------------+ | MEMBER_ID | MEMBER_ROLE | MEMBER_VERSION | +--------------------------------------+-------------+----------------+ | 2adec6d2-febb-11ed-baca-d08e7908bcb1 | SECONDARY | 8.0.32 | | 2f68fee2-febb-11ed-b51e-d08e7908bcb1 | ARBITRATOR | 8.0.32 | | 5e34a5e2-feb6-11ed-b288-d08e7908bcb1 | PRIMARY | 8.0.32 | +--------------------------------------+-------------+----------------+
3. 观测SQL运行状态
查看当前连接/会话的连接ID、内部线程ID:
greatsql> select processlist_id, thread_id from performance_schema.threads where processlist_id = connection_id(); +----------------+-----------+ | processlist_id | thread_id | +----------------+-----------+ | 110 | 207 | +----------------+-----------+
查询得到当前的连接ID=110,内部线程ID=207。
P.S,由于本文整理过程不是连续的,所以下面看到的 thread_id 值可能会有好几个,每次都不同。
3.1 观测SQL运行时的内存消耗
执行下面的SQL,查询所有员工的薪资总额,按员工号分组,并按薪资总额倒序,取前10条记录:
greatsql> explain select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10\G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: salaries partitions: NULL type: index possible_keys: PRIMARY key: PRIMARY key_len: 7 ref: NULL rows: 2838426 filtered: 100.00 Extra: Using temporary; Using filesort
看到需要全索引扫描(其实也等同于全表扫描,因为是基于PRIMARY索引),并且还需要生成临时表,以及额外的filesort。
在正式运行该SQL之前,在另外的窗口中新建一个连接会话,执行下面的SQL先观察该连接/会话当前的内存分配情况:
greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207\G *************************** 1. row *************************** thread_id: 207 user: root@localhost current_count_used: 9 current_allocated: 26266 current_avg_alloc: 2918.4444 current_max_alloc: 16464 total_allocated: 30311
等到该SQL执行完了,再一次查询内存分配情况:
greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207\G *************************** 1. row *************************** thread_id: 207 user: root@localhost current_count_used: 13 current_allocated: 24430 current_avg_alloc: 1879.2308 current_max_alloc: 16456 total_allocated: 95719
我们注意到几个数据的变化情况,用下面表格来展示:
指标 | 运行前 | 运行后 |
---|---|---|
total_allocated | 30311 | 95719 |
也就是说,SQL运行时,需要分配的内存是:95719 - 30311 = 65408 字节。
3.2 观测SQL运行时的其他开销
通过观察 performance_schema.status_by_thread
表,可以知道相应连接/会话中SQL运行的一些状态指标。在SQL运行结束后,执行下面的SQL命令即可查看:
greatsql> select * from performance_schema.status_by_thread where thread_id = 207; ... | 207 | Created_tmp_disk_tables | 0 | | 207 | Created_tmp_tables | 0 | ... | 207 | Handler_read_first | 1 | | 207 | Handler_read_key | 1 | | 207 | Handler_read_last | 0 | | 207 | Handler_read_next | 2844047 | | 207 | Handler_read_prev | 0 | | 207 | Handler_read_rnd | 0 | | 207 | Handler_read_rnd_next | 0 | | 207 | Handler_rollback | 0 | | 207 | Handler_savepoint | 0 | | 207 | Handler_savepoint_rollback | 0 | | 207 | Handler_update | 0 | | 207 | Handler_write | 0 | | 207 | Last_query_cost | 286802.914893 | | 207 | Last_query_partial_plans | 1 | ... | 207 | Select_full_join | 0 | | 207 | Select_full_range_join | 0 | | 207 | Select_range | 0 | | 207 | Select_range_check | 0 | | 207 | Select_scan | 1 | | 207 | Slow_launch_threads | 0 | | 207 | Slow_queries | 1 | | 207 | Sort_merge_passes | 0 | | 207 | Sort_range | 0 | | 207 | Sort_rows | 1 | | 207 | Sort_scan | 1 | ...
上面我们只罗列了部分比较重要的状态指标。从这个结果也可以佐证slow query log中的结果,确实没创建临时表。
作为参照,查看这条SQL对应的slow query log记录:
# Query_time: 0.585593 Lock_time: 0.000002 Rows_sent: 10 Rows_examined: 2844057 Thread_id: 110 Errno: 0 Killed: 0 Bytes_received: 115 Bytes_sent: 313 Read_first: 1 Read_last: 0 Read_key: 1 Read_next: 2844047 Read_prev: 0 Read_rnd: 0 Read_rnd_next: 0 Sort_merge_passes: 0 Sort_range_count: 0 Sort_rows: 10 Sort_scan_count: 1 Created_tmp_disk_tables: 0 Created_tmp_tables: 0 Start: 2023-07-06T10:06:01.438376+08:00 End: 2023-07-06T10:06:02.023969+08:00 Schema: employees Rows_affected: 0 # Tmp_tables: 0 Tmp_disk_tables: 0 Tmp_table_sizes: 0 # InnoDB_trx_id: 0 # Full_scan: Yes Full_join: No Tmp_table: No Tmp_table_on_disk: No # Filesort: Yes Filesort_on_disk: No Merge_passes: 0 # InnoDB_IO_r_ops: 0 InnoDB_IO_r_bytes: 0 InnoDB_IO_r_wait: 0.000000 # InnoDB_rec_lock_wait: 0.000000 InnoDB_queue_wait: 0.000000 # InnoDB_pages_distinct: 4281 use employees; SET timestamp=1688609161; select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10;
可以看到,Created_tmp_disk_tables
, Created_tmp_tables
, Handler_read_next
, Select_full_join
, Select_scan
, Sort_rows
, Sort_scan
, 等几个指标的数值是一样的。
还可以查看该SQL运行时的I/O latency情况,SQL运行前后两次查询对比:
greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207; +----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+ | user | total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id | +----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+ | root@localhost | 7 | 75.39 us | 5.84 us | 10.77 us | 22.12 us | 207 | 110 | +----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+ ... greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207; +----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+ | user | total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id | +----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+ | root@localhost | 8 | 85.29 us | 5.84 us | 10.66 us | 22.12 us | 207 | 110 | +----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
可以看到这个SQL运行时的I/O latency是:85.29 - 75.39 = 9.9us。
3.3 观测SQL运行进度
我们知道,运行完一条SQL后,可以利用PROFLING功能查看它各个阶段的耗时,但是在运行时如果也想查看各阶段耗时该怎么办呢?
从MySQL 5.7版本开始,可以通过 performance_schema.events_stages_%
相关表查看SQL运行过程以及各阶段耗时,需要先修改相关设置:
# 确认是否对所有主机&用户都启用 greatsql> SELECT * FROM performance_schema.setup_actors; +------+------+------+---------+---------+ | HOST | USER | ROLE | ENABLED | HISTORY | +------+------+------+---------+---------+ | % | % | % | NO | NO | +------+------+------+---------+---------+ # 修改成对所有主机&用户都启用 greatsql> UPDATE performance_schema.setup_actors SET ENABLED = 'YES', HISTORY = 'YES' WHERE HOST = '%' AND USER = '%'; # 修改 setup_instruments & setup_consumers 设置 greatsql> UPDATE performance_schema.setup_consumers SET ENABLED = 'YES' WHERE NAME LIKE '%events_statements_%'; greatsql> UPDATE performance_schema.setup_consumers SET ENABLED = 'YES' WHERE NAME LIKE '%events_stages_%';
这就实时可以观测SQL运行过程中的状态了。
在SQL运行过程中,从另外的窗口查看该SQL对应的 EVENT_ID
:
greatsql> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXT FROM performance_schema.events_statements_history WHERE thread_id = 85 order by event_id desc limit 5; +----------+----------+-------------------------------------------------------------------------------------------------------------------------------+ | EVENT_ID | Duration | SQL_TEXT | +----------+----------+-------------------------------------------------------------------------------------------------------------------------------+ | 149845 | 0.6420 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 | | 149803 | 0.6316 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 | | 149782 | 0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 | | 149761 | 0.6361 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 | | 149740 | 0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 | +----------+----------+-------------------------------------------------------------------------------------------------------------------------------+ # 再根据 EVENT_ID 值去查询 events_stages_history_long greatsql> SELECT thread_id ,event_Id, event_name AS Stage, TRUNCATE(TIMER_WAIT/1000000000000,6) AS Duration FROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID = 149845 order by event_id; +-----------+----------+------------------------------------------------+----------+ | thread_id | event_Id | Stage | Duration | +-----------+----------+------------------------------------------------+----------+ | 85 | 149846 | stage/sql/starting | 0.0000 | | 85 | 149847 | stage/sql/Executing hook on transaction begin. | 0.0000 | | 85 | 149848 | stage/sql/starting | 0.0000 | | 85 | 149849 | stage/sql/checking permissions | 0.0000 | | 85 | 149850 | stage/sql/Opening tables | 0.0000 | | 85 | 149851 | stage/sql/init | 0.0000 | | 85 | 149852 | stage/sql/System lock | 0.0000 | | 85 | 149854 | stage/sql/optimizing | 0.0000 | | 85 | 149855 | stage/sql/statistics | 0.0000 | | 85 | 149856 | stage/sql/preparing | 0.0000 | | 85 | 149857 | stage/sql/Creating tmp table | 0.0000 | | 85 | 149858 | stage/sql/executing | 0.6257 | | 85 | 149859 | stage/sql/end | 0.0000 | | 85 | 149860 | stage/sql/query end | 0.0000 | | 85 | 149861 | stage/sql/waiting for handler commit | 0.0000 | | 85 | 149862 | stage/sql/closing tables | 0.0000 | | 85 | 149863 | stage/sql/freeing items | 0.0000 | | 85 | 149864 | stage/sql/logging slow query | 0.0000 | | 85 | 149865 | stage/sql/cleaning up | 0.0000 | +-----------+----------+------------------------------------------------+----------+
上面就是这条SQL的运行进度展示,以及各个阶段的耗时,和PROFILING
的输出一样,当我们了解一条SQL运行所需要经历的各个阶段时,从上面的输出结果中也就能估算出该SQL大概还要多久能跑完,决定是否要提前kill它。
如果想要观察DDL SQL的运行进度,可以参考这篇文章:不用MariaDB/Percona也能查看DDL的进度。
更多的观测指标、维度还有待继续挖掘,以后有机会再写。
另外,也可以利用MySQL Workbench工具,或MySQL Enterprise Monitor,都已集成了很多可观测性指标,相当不错的体验。
延伸阅读
- Query Profiling Using Performance Schema, https://dev.mysql.com/doc/refman/8.0/en/performance-schema-query-profiling.html
- 不用MariaDB/Percona也能查看DDL的进度,https://mp.weixin.qq.com/s?__biz=MjM5NzAzMTY4NQ==&mid=2653931466&idx=1&sn=8c14c7a6449205b61990a567a1be315e&scene=21#wechat_redirect
- 事件记录 | performance_schema全方位介绍,http://mp.weixin.qq.com/s?__biz=MjM5NzAzMTY4NQ==&mid=2653935075&idx=3&sn=85be3a5bbe6be8bacd2a88e22ab95b5c&chksm=bd3b4f898a4cc69fb303f977912f4ee4a399ab96b72b8d994e262b1095edad4c7e2e6f45dc9b&scene=21#wechat_redirect
- 内存分配统计视图 | 全方位认识 sys 系统库,http://mp.weixin.qq.com/s?__biz=MjM5NzAzMTY4NQ==&mid=2653935156&idx=6&sn=3061ca49bdefd61eca1fe9b3c52097a1&chksm=bd3b4c5e8a4cc5480e6c27dc42a68837a113abea4279b4ae492078f263cb65421c99dc39d978&scene=21#wechat_redirect
Enjoy GreatSQL 😃
关于 GreatSQL
GreatSQL是适用于金融级应用的国内自主开源数据库,具备高性能、高可靠、高易用性、高安全等多个核心特性,可以作为MySQL或Percona Server的可选替换,用于线上生产环境,且完全免费并兼容MySQL或Percona Server。
相关链接: GreatSQL社区 Gitee GitHub Bilibili
GreatSQL社区:
社区博客有奖征稿详情:https://greatsql.cn/thread-100-1-1.html
技术交流群:
微信:扫码添加
GreatSQL社区助手
微信好友,发送验证信息加群
。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!