Dijkstra 算法实现原理

转自https://www.jianshu.com/p/ff6db00ad866

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。


(嗯,第一段是抄的,由于本人算法的基础比较薄弱,我会尽量用通俗易懂的语言来让大家理解本文)

参考博客:数据结构--Dijkstra算法最清楚的讲解

大概就是这样一个有权图,Dijkstra算法可以计算任意节点其他节点的最短路径

 
 

 

算法思路

  1. 指定一个节点,例如我们要计算 'A' 到其他节点的最短路径
  2. 引入两个集合(S、U),S集合包含已求出的最短路径的点(以及相应的最短长度),U集合包含未求出最短路径的点(以及A到该点的路径,注意 如上图所示,A->C由于没有直接相连 初始时为∞
  3. 初始化两个集合,S集合初始时 只有当前要计算的节点,A->A = 0
    U集合初始时为 A->B = 4, A->C = ∞, A->D = 2, A->E = ∞敲黑板!!!接下来要进行核心两步骤了
  4. 从U集合中找出路径最短的点,加入S集合,例如 A->D = 2
  5. 更新U集合路径,if ( 'D 到 B,C,E 的距离' + 'AD 距离' < 'A 到 B,C,E 的距离' ) 则更新U
  6. 循环执行 4、5 两步骤,直至遍历结束,得到A 到其他节点的最短路径

算法图解

 

 

1.选定A节点并初始化,如上述步骤3所示
 
 

2.执行上述 4、5两步骤,找出U集合中路径最短的节点D 加入S集合,并根据条件 if ( 'D 到 B,C,E 的距离' + 'AD 距离' < 'A 到 B,C,E 的距离' ) 来更新U集合

 
 

 

3.这时候 A->B, A->C 都为3,没关系。其实这时候他俩都是最短距离,如果从算法逻辑来讲的话,会先取到B点。而这个时候 if 条件变成了 if ( 'B 到 C,E 的距离' + 'AB 距离' < 'A 到 C,E 的距离' )如图所示这时候A->B距离 其实为 A->D->B

 
 

 

  1. 思路就是这样,往后就是大同小异了
 
 
  1. 算法结束
 
 

代码实现

 

 1 public class Dijkstra {
 2     public static final int M = 10000; // 代表正无穷
 3     
 4     public static void main(String[] args) {
 5         // 二维数组每一行分别是 A、B、C、D、E 各点到其余点的距离, 
 6         // A -> A 距离为0, 常量M 为正无穷
 7         int[][] weight1 = {
 8                 {0,4,M,2,M}, 
 9                 {4,0,4,1,M}, 
10                 {M,4,0,1,3}, 
11                 {2,1,1,0,7},   
12                 {M,M,3,7,0} 
13             };
14 
15         int start = 0;
16         
17         int[] shortPath = dijkstra(weight1, start);
18 
19         for (int i = 0; i < shortPath.length; i++)
20             System.out.println("从" + start + "出发到" + i + "的最短距离为:" + shortPath[i]);
21     }
22 
23     public static int[] dijkstra(int[][] weight, int start) {
24         // 接受一个有向图的权重矩阵,和一个起点编号start(从0编号,顶点存在数组中)
25         // 返回一个int[] 数组,表示从start到它的最短路径长度
26         int n = weight.length; // 顶点个数
27         int[] shortPath = new int[n]; // 保存start到其他各点的最短路径
28         String[] path = new String[n]; // 保存start到其他各点最短路径的字符串表示
29         for (int i = 0; i < n; i++)
30             path[i] = new String(start + "-->" + i);
31         int[] visited = new int[n]; // 标记当前该顶点的最短路径是否已经求出,1表示已求出
32 
33         // 初始化,第一个顶点已经求出
34         shortPath[start] = 0;
35         visited[start] = 1;
36 
37         for (int count = 1; count < n; count++) { // 要加入n-1个顶点
38             int k = -1; // 选出一个距离初始顶点start最近的未标记顶点
39             int dmin = Integer.MAX_VALUE;
40             for (int i = 0; i < n; i++) {
41                 if (visited[i] == 0 && weight[start][i] < dmin) {
42                     dmin = weight[start][i];
43                     k = i;
44                 }
45             }
46 
47             // 将新选出的顶点标记为已求出最短路径,且到start的最短路径就是dmin
48             shortPath[k] = dmin;
49             visited[k] = 1;
50 
51             // 以k为中间点,修正从start到未访问各点的距离
52             for (int i = 0; i < n; i++) {
53                 //如果 '起始点到当前点距离' + '当前点到某点距离' < '起始点到某点距离', 则更新
54                 if (visited[i] == 0 && weight[start][k] + weight[k][i] < weight[start][i]) {
55                     weight[start][i] = weight[start][k] + weight[k][i];
56                     path[i] = path[k] + "-->" + i;
57                 }
58             }
59         }
60         for (int i = 0; i < n; i++) {
61             
62             System.out.println("从" + start + "出发到" + i + "的最短路径为:" + path[i]);
63         }
64         System.out.println("=====================================");
65         return shortPath;
66     }
67     
68 }

作者:殷天文
链接:https://www.jianshu.com/p/ff6db00ad866

posted @ 2019-04-29 10:13  lllunaticer  阅读(1055)  评论(0编辑  收藏  举报