推荐算法介绍
参考:今日头条推荐算法原理详解https://lusongsong.com/info/post/9829.html?__SAKURA=1bfda19153216f98a2cd21274262ab30d1566441057_1518905
1.典型推荐算法
2.典型推荐特征
主要有四类特征会对推荐起到比较重要的作用。
第一类是相关性特征,就是评估内容的属性和与用户是否匹配。显性的匹配包括关键词匹配、分类匹配、来源匹配、主题匹配等。像FM模型中也有一些隐性匹配,从用户向量与内容向量的距离可以得出。
第二类是环境特征,包括地理位置、时间。这些既是bias特征,也能以此构建一些匹配特征。
第三类是热度特征。包括全局热度、分类热度,主题热度,以及关键词热度等。内容热度信息在大的推荐系统特别在用户冷启动的时候非常有效。
第四类是协同特征,它可以在部分程度上帮助解决所谓算法越推越窄的问题。协同特征并非考虑用户已有历史。而是通过用户行为分析不同用户间相似性,比如点击相似、兴趣分类相似、主题相似、兴趣词相似,甚至向量相似,从而扩展模型的探索能力。
3.召回策略
见https://www.cnblogs.com/graybird/p/11393511.html
不同公司业务会设计自己的召回策略
4.数据依赖
5.评估体系