Problem Description
Considera positive integer X,and let S be the sum of all positive integer divisors of2004^X. Your job is to determine S modulo 29 (the rest of the division of S by29).
Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3,4, 6, 12, 167, 334, 501, 668, 1002 and 2004. Therefore S = 4704 and S modulo 29is equal to 6.
Input
Theinput consists of several test cases. Each test case contains a line with theinteger X (1 <= X <= 10000000).
A test case of X = 0 indicates the end of input, and should not be processed.
Output
Foreach test case, in a separate line, please output the result of S modulo 29.
Sample Input
1
10000
0
Sample Output
6
10
/***************************
解题思路:
参考大神的:http://www.cnblogs.com/372465774y/archive/2012/10/22/2733977.html
体重主要用到除数和函数。
除数和函数 :F(n) 求n的约数的和 ( 约数大于等于1 小于n )
除数和函数是一个积性函数,满足性质 :当m , n 互质时, f(m*n) = f(m) * f(n)
如果 p 是一个素数,则 f(p^n) = 1 + p + p^2 +p^3 +p^4 + .... + p^(n-1) + p^n = (p^(n+1) -1)/p-1 (等比数列求和)
则题目中 f(2004^n) = f(2^(2*n)) * f(3^n) * f(167^n)
= (2^(2*n+1) -1) * (3^(n+1) -1)/2 *(167^(n+1) -1)/166
用到乘法逆元:(同余性质)
a^k/d = a^k*(d-1) d-1 即为d的逆元。 3的逆元为15 167 的逆元为18
然后还要用到 快速幂模:转换为位运算,这题要用这个,一般的会超时,具体看代码吧。
*************************/
Code:
#include<stdio.h> using namespace std; int Mod(int a,int b)// 快速幂模函数 { int t = 1; while(b) { if(b&1) t = t*a%29; b>>=1; a = a*a%29; } return t; } int main() { int n,a,b,c; while(scanf("%d",&n)&&n) { a=(Mod(2,2*n+1)-1); b=(Mod(3,n+1)-1)*15; c=(Mod(22,n+1)-1)*18; printf("%d\n",a*b*c%29); } return 0; }