RankNet
RankNet 论文的笔记:Learning to rank using gradient descent.
模型
- 特征 \(\mathbf x_i \in \mathbb R^d\)
- 模型函数:\(f: \mathbb R^d \to \mathbb R\)
若 \(f(\mathbf x_i) > f(\mathbf x_j)\) 则表示模型预测 i 排在 j 前面: \(\mathbf x_i \triangleright \mathbf x_j\)。
后验概率 $ P_{ij} = P(\mathbf x_i \triangleright \mathbf x_j)$ 用如下形式:
损失函数使用交叉熵的形式,并根据上面的定义变形为:
其中根据样本中两个 item 排序的在前、在后和同序关系,目标取值为:
关于假设合理性的讨论
论文中已经证明上述模型假设的一致性、传递性。由于 \(o_{ik} = o_i - o_j + (o_j-o_k) = o_{ij} + o_{jk}\),则容易得到:
-
自洽性
上式满足 \(0 < P_{ij} < 1\). -
传递性:
在概率等于 \(p\in \{0, 0,5, 1\}\) 的时候,等号具有传递性:\[ P(A \triangleright B) = p, \quad P(B \triangleright C) = p, \\ \]\(P < 0.5\) 时,小于号传递性:
\[ P(A \triangleright B) = p, \quad P(B \triangleright C) = p, \\ \]$ 0.5 < P < 1 $ 时,大于号传递性:
\[ P(A \triangleright B) = p, \quad P(B \triangleright C) = p, \\ \]以上的传递不限于两步,经过多步仍然满足。
优模型化
\(o_i\) 的取值使用神经网络模型
[ o_i = g^3 \left( \sum_j w_j^{32} g^2 \left( \sum_k w^{21}_{jk} x_k + b^2_j \right) +b^3_i \right) \equiv g^3_i ]
其中 \(g^3, g^2, w^{32}, w^{21},b^2, b^3\) 分别为第三、第二层激活函数,第三、第二层的权重、第二、第三层偏置。
定义一个 pair 样本的损失为 $ l(o_2-o_1)$ (论文中用 \(f\) 表示,这里换成 \(l\)),则参数的梯度 \(\partial_\alpha l = (\partial_\alpha o_2 - \partial_\alpha o_1)l'\)。注意 \(\partial_\alpha o_2 = \partial_\alpha f(\mathbf x_2)\)
[ \frac{\partial l}{\partial b^3} = l'(g'^3(\mathbf x_2) - g'^3(\mathbf x_1)) \equiv \Delta^3_2 - \Delta^3_1\
\frac{\partial l}{\partial w^{32}i} = \Delta^3_2 g^2_i(\mathbf x_2) - \Delta^3_1 g^2_i(\mathbf x_1) \
\frac{\partial l}{\partial b^2_i} = \Delta^3_2 w^{32}i g'^2_i(\mathbf x_2) - \Delta^3_1 w^{32}i g'^2_i(\mathbf x_1) \equiv \Delta^2 - \Delta^2 \
\frac{\partial l}{\partial w^{21}{ij}} = \Delta^2_{2,i} x_{2,j} - \Delta^2_{1,i} x_{1,j} \ ]
所有参数都可以根据上面的梯度,用梯度下降法来优化。