[LeetCode] 1310. XOR Queries of a Subarray 子数组异或查询
You are given an array arr
of positive integers. You are also given the array queries
where queries[i] = [lefti, righti]
.
For each query i
compute the XOR of elements from lefti
to righti
(that is, arr[lefti] XOR arr[lefti + 1] XOR ... XOR arr[righti]
).
Return an array answer
where answer[i]
is the answer to the ith
query.
Example 1:
Input: arr = [1,3,4,8], queries = [[0,1],[1,2],[0,3],[3,3]]
Output: [2,7,14,8]
Explanation:
The binary representation of the elements in the array are:
1 = 0001
3 = 0011
4 = 0100
8 = 1000
The XOR values for queries are:
[0,1] = 1 xor 3 = 2
[1,2] = 3 xor 4 = 7
[0,3] = 1 xor 3 xor 4 xor 8 = 14
[3,3] = 8
Example 2:
Input: arr = [4,8,2,10], queries = [[2,3],[1,3],[0,0],[0,3]]
Output: [8,0,4,4]
Constraints:
1 <= arr.length, queries.length <= 3 * 104
1 <= arr[i] <= 109
queries[i].length == 2
0 <= lefti <= righti < arr.length
这道题给了一个正整数数组,和一堆查询区间,让计算每个区间内所有的数字的'异或'和。博主看到这种玩区间的题目,首先想到的是建立累加和数组,但是这里不是求区间和,而是区间内数字的'异或'和,所以需要研究一下这种这种思路是否在这里同样适用。这里的'异或'是位操作,简单来说就是相同取0,不同取1,根据这个性质可以得出两个结论,第一个结论是相同的数字'异或'后为0,因为相同的数字每一位都是相同的,'异或'后均为0。第二个结论是任何数字'异或'0之后均为其本身不变,因为0'异或'0还是0,0'异或'1后仍为1,并不发生任何变化。
理解了这两条性质后,再来研究下区间,若原数组为 [a, b, c, d],若想求 c^d
,可不可以通过整个区间的'异或'和 a^b^c^d
,和前两个数字的'异或' a^b
来得到呢,其实是可以的,将二者'异或'起来,变成 a^b^c^d^a^b
,调整下顺序,变为 a^a^b^b^c^d
,根据之前分析的性质可以得到 c^d
。所以这道题还是可以使用累加和数组的思路来做,只不过这里变成了累加'异或'和数组。分析道这里,应该就不难写出代码了,首先建立累加'异或'和数组,这里长度为 n+1,方便处理边界,对于每个给定区间 [i, j] 的'异或'和计算方法,就是用 xors[j+1]^xors[i]
即可,参见代码如下:
class Solution {
public:
vector<int> xorQueries(vector<int>& arr, vector<vector<int>>& queries) {
int n = arr.size();
vector<int> res, xors(n + 1);
for (int i = 1; i <= n; ++i) {
xors[i] = xors[i - 1] ^ arr[i - 1];
}
for (auto &query : queries) {
res.push_back(xors[query[1] + 1] ^ xors[query[0]]);
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/1310
参考资料:
https://leetcode.com/problems/xor-queries-of-a-subarray/
https://leetcode.com/problems/xor-queries-of-a-subarray/discuss/470702/C%2B%2B-Prefix-XORs