Sentinel源码分析-滑动窗口统计原理

滑动窗口技术是Sentinel比较关键的核心技术,主要用于数据统计

通过分析StatisticSlot来慢慢引出这个概念
 @Override
    public void entry(Context context, ResourceWrapper resourceWrapper, DefaultNode node, int count,
                      boolean prioritized, Object... args) throws Throwable {
        try {
            // Do some checking.
            fireEntry(context, resourceWrapper, node, count, prioritized, args);

            // Request passed, add thread count and pass count.
            node.increaseThreadNum();
            node.addPassRequest(count);
			......
			}
			......
从代码中可以看出,在其他Slot通过后,会调用node进行计数,我们来看node.addPassRequest(count);, 由于我们使用的是FlowQpsDemo
    @Override
    public void addPassRequest(int count) {
        super.addPassRequest(count);
        this.clusterNode.addPassRequest(count);
    }
直接看this.clusterNode.addPassRequest(count); 因为clusterNode是default模式下主要用得统计数据node,而它继承于StatisticsNode,于是调用的是
//StatisticsNode.java
    private transient Metric rollingCounterInMinute = new ArrayMetric(60, 60 * 1000, false);

    @Override
    public void addPassRequest(int count) {
        rollingCounterInSecond.addPass(count);
        rollingCounterInMinute.addPass(count);
    }
两个成员类似,我们看其中之一rollingCounterInMinute.addPass,最终会调用
// ArrayMetric.java
    this.data = new BucketLeapArray(sampleCount, intervalInMs);

    @Override
    public void addPass(int count) {
	//核心方法
        WindowWrap<MetricBucket> wrap = data.currentWindow();
        wrap.value().addPass(count);
    }
这里的data 是一个非常核心的成员,主要用于判断将数据放到那个窗口(桶)中,wrap.value().addPass(count)负责将数据写入
这个 BucketLeapArray就实现了滑动窗口
当调用data.currentWindow()寻找当前该写入的windows时,最终会调用以下方法,这个是非常关键的方法
public WindowWrap<T> currentWindow(long timeMillis) {
        if (timeMillis < 0) {
            return null;
        }
		//1. 根据当前的诗句计算数组的Index
        int idx = calculateTimeIdx(timeMillis);
        // Calculate current bucket start time.
		//2. 由于是相当于是环形数组,需要计算一下窗口开始时间,用于复用窗口时覆盖用
        long windowStart = calculateWindowStart(timeMillis);

        /*
         * Get bucket item at given time from the array.
         *
         * (1) Bucket is absent, then just create a new bucket and CAS update to circular array.
         * (2) Bucket is up-to-date, then just return the bucket.
         * (3) Bucket is deprecated, then reset current bucket and clean all deprecated buckets.
         */
        while (true) {
            WindowWrap<T> old = array.get(idx);
            if (old == null) {
			//如果进到这里,说明刚启动不久,还有桶还没创建,新建一个
                /*
                 *     B0       B1      B2    NULL      B4
                 * ||_______|_______|_______|_______|_______||___
                 * 200     400     600     800     1000    1200  timestamp
                 *                             ^
                 *                          time=888
                 *            bucket is empty, so create new and update
                 *
                 * If the old bucket is absent, then we create a new bucket at {@code windowStart},
                 * then try to update circular array via a CAS operation. Only one thread can
                 * succeed to update, while other threads yield its time slice.
                 */
                WindowWrap<T> window = new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
                if (array.compareAndSet(idx, null, window)) {
                    // Successfully updated, return the created bucket.
                    return window;
                } else {
                    // Contention failed, the thread will yield its time slice to wait for bucket available.
                    Thread.yield();
                }
            } else if (windowStart == old.windowStart()) {
			//进到这里来,说明还在同一个桶的时间区间内(start相同),直接返回
                /*
                 *     B0       B1      B2     B3      B4
                 * ||_______|_______|_______|_______|_______||___
                 * 200     400     600     800     1000    1200  timestamp
                 *                             ^
                 *                          time=888
                 *            startTime of Bucket 3: 800, so it's up-to-date
                 *
                 * If current {@code windowStart} is equal to the start timestamp of old bucket,
                 * that means the time is within the bucket, so directly return the bucket.
                 */
                return old;
            } else if (windowStart > old.windowStart()) {
			// 进到这里来,说明已经在数据中转了一圈,复用的是旧的窗口,需要重置下旧窗口
                /*
                 *   (old)
                 *             B0       B1      B2    NULL      B4
                 * |_______||_______|_______|_______|_______|_______||___
                 * ...    1200     1400    1600    1800    2000    2200  timestamp
                 *                              ^
                 *                           time=1676
                 *          startTime of Bucket 2: 400, deprecated, should be reset
                 *
                 * If the start timestamp of old bucket is behind provided time, that means
                 * the bucket is deprecated. We have to reset the bucket to current {@code windowStart}.
                 * Note that the reset and clean-up operations are hard to be atomic,
                 * so we need a update lock to guarantee the correctness of bucket update.
                 *
                 * The update lock is conditional (tiny scope) and will take effect only when
                 * bucket is deprecated, so in most cases it won't lead to performance loss.
                 */
                if (updateLock.tryLock()) {
                    try {
                        // Successfully get the update lock, now we reset the bucket.
                        return resetWindowTo(old, windowStart);
                    } finally {
                        updateLock.unlock();
                    }
                } else {
                    // Contention failed, the thread will yield its time slice to wait for bucket available.
                    Thread.yield();
                }
            } else if (windowStart < old.windowStart()) {
                // Should not go through here, as the provided time is already behind.
                return new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));
            }
        }
    }

我们的demo是创建了一个有60个桶的BucketLeapArray,就这样一直顺序向后循环使用。

定义桶结构的类为MetricBucket

public class MetricBucket {
    private final LongAdder[] counters;

	...
    public MetricBucket() {
        MetricEvent[] events = MetricEvent.values();
        this.counters = new LongAdder[events.length];
        for (MetricEvent event : events) {
            counters[event.ordinal()] = new LongAdder();
        }
	...
	}
		
	public MetricBucket add(MetricEvent event, long n) {
		counters[event.ordinal()].add(n);
		return this;
	}


}

可以看出Bucket就是用线程安全类型LongAdder来进行技术逻辑(比AtomicLong性能好一些)

posted @ 2022-08-14 16:31  明月照江江  阅读(145)  评论(0编辑  收藏  举报