Libev源码分析03:Libev使用堆管理定时器

         Libev中在管理定时器时,使用了堆这种结构,而且除了常见的最小2叉堆之外,它还实现了更高效的4叉堆。


         之所以要实现4叉堆,是因为普通2叉堆的缓存效率较低,所谓缓存效率低,也就是说对CPU缓存的利用率比较低,说白了,就是违背了局部性原理。这是因为在2叉堆中,对元素的操作通常在N和N/2之间进行,所以对于含有大量元素的堆来说,两个操作数之间间隔比较远,对CPU缓存利用不太好。Libev中的注释说明,对于元素个数为50000+的堆来说,4叉堆的效率要提高5%所有。


         在看Libev中堆的实现代码之前,先来看一个基本定理:对于n叉堆来说,使用数组进行存储时,下标为x的元素,其孩子节点的下标范围是[nx+1, nx+n]。比如2叉堆,下标为x的元素,其孩子节点的下标为2x+1和2x+2.

         

 

         根据定理,对于4叉堆而言,下标为x的元素,其孩子节点的下标范围是[4x+1, 4x+4]。还可以得出,其父节点的下标是(x-1)/4。然而在Libev的代码中,使用数组a存储堆时,4叉堆的第一个元素存放在a[3],2叉堆的第一个元素存放在a[1]。

         所以,对于Libev中的4叉堆实现而言,下标为k的元素(对应在正常实现中的下标是k-3),其孩子节点的下标范围是[4(k-3)+1+3, 4(k-3)+4+3];其父节点的下标是((k-3-1)/4)+3

         对于Libev中的2叉堆实现而言,下标为k的元素(对应在正常实现中,其下标是k-1),其孩子节点的下标范围是[2(k-1)+1+1,  2(k-1)+2+1],也就是[2k, 2k+1];其父节点的下标是((k-1-1)/2)+1,也就是k/2

 

         下面来看Libev中的代码:

1:堆元素

#if EV_HEAP_CACHE_AT
  /* a heap element */
  typedef struct {
    ev_tstamp at;
    WT w;
  } ANHE;

  #define ANHE_w(he)        (he).w     /* access watcher, read-write */
  #define ANHE_at(he)       (he).at    /* access cached at, read-only */
  #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
#else
  /* a heap element */
  typedef WT ANHE;

  #define ANHE_w(he)        (he)
  #define ANHE_at(he)       (he)->at
  #define ANHE_at_cache(he)
#endif

         ANHE就是堆元素,它要么就是一个指向时间监视器结构ev_watcher_time的指针(WT),要么除了包含该指针之外,还缓存了ev_watcher_time中的成员at。堆中元素就是根据at的值进行组织的,具有最小at值得节点就是根节点。

         在Libev中,为了提高缓存命中率,在堆中缓存了元素at,文档中的原文是:

         Heaps are not very cache-efficient. To improve the cache-efficiency of the timer and periodics heaps, libev can cache the timestamp (at) within the heap structure(selected by defining EV_HEAP_CACHE_AT to 1), which uses 8-12 bytes more per watcher and a few hundred bytes more code, but avoids random read accesses on heap changes. This improves performance noticeably with many (hundreds) ofwatchers.

 

2:宏定义

#if EV_USE_4HEAP

#define DHEAP 4
#define HEAP0 (DHEAP - 1) /* index of first element in heap */
#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
#define UPHEAP_DONE(p,k) ((p) == (k))
...
#else
    
#define HEAP0 1
#define HPARENT(k) ((k) >> 1)
#define UPHEAP_DONE(p,k) (!(p))
...

         其中的宏HEAP0表示堆中第一个元素的下标;HPARENT是求下标为k的节点的父节点下标;UPHEAP_DONE宏用于向上调整堆时,判断是否已经到达了根节点,对于4叉堆而言,根节点下标为3,其父节点的下标根据公式得出,也是3,所以结束的条件((p) == (k)),对于2叉堆而言,根节点下标为1,其父节点根据公式得出下标为0,所以结束的条件是(!(p))

 

3:向下调整堆

         首先是4叉堆:

void downheap (ANHE *heap, int N, int k)
{
    ANHE he = heap [k];
    ANHE *E = heap + N + HEAP0;

    for (;;)
    {
        ev_tstamp minat;
        ANHE *minpos;
        ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;

        /* find minimum child */
        if (expect_true (pos + DHEAP - 1 < E))
        {
            /* fast path */                               
                (minpos = pos + 0), (minat = ANHE_at (*minpos));
            if (ANHE_at (pos [1]) < minat) 
                (minpos = pos + 1), (minat = ANHE_at (*minpos));
            if (ANHE_at (pos [2]) < minat) 
                (minpos = pos + 2), (minat = ANHE_at (*minpos));
            if (ANHE_at (pos [3]) < minat) 
                (minpos = pos + 3), (minat = ANHE_at (*minpos));
        }
        else if (pos < E)
        {
            /* slow path */                               
                (minpos = pos + 0), (minat = ANHE_at (*minpos));
            if (pos + 1 < E && ANHE_at (pos [1]) < minat) 
                (minpos = pos + 1), (minat = ANHE_at (*minpos));
            if (pos + 2 < E && ANHE_at (pos [2]) < minat) 
                (minpos = pos + 2), (minat = ANHE_at (*minpos));
            if (pos + 3 < E && ANHE_at (pos [3]) < minat) 
                (minpos = pos + 3), (minat = ANHE_at (*minpos));
        }
        else
            break;

        if (ANHE_at (he) <= minat)
            break;

        heap [k] = *minpos;
        ev_active (ANHE_w (*minpos)) = k;

        k = minpos - heap;
    }

    heap [k] = he;
    ev_active (ANHE_w (he)) = k;
}

         如果理解普通二叉堆的向下调整算法的话,上面的代码还是很容易理解的。参数heap表示堆的起始地址,N表示堆中实际元素的总数,k表示需要调整元素的下标。

         E表示堆中最后一个元素的下一个元素,用于判断是否已经到达了末尾。在foo循环中,首先得到节点heap [k]的第一个子节点的指针pos,pos + DHEAP – 1表示最后一个子节点的指针。

         依次比较4个子节点,找到heap[k]所有子节点中的最小元素minpos。如果heap [k]的at值比minpos的at值还小,说明已经符合堆结构了,直接退出循环即可。否则的话,将minpos上移,依次循环下去。

         ev_active(ANHE_w (*minpos)) = k,将时间监视器的active成员置为其在堆中的下标。

 

         然后是2叉堆:

void downheap (ANHE *heap, int N, int k)
{
    ANHE he = heap [k];

    for (;;)
    {
        int c = k << 1;

        if (c >= N + HEAP0)
            break;

        c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) ? 1 : 0;

        if (ANHE_at (he) <= ANHE_at (heap [c]))
            break;

        heap [k] = heap [c];
        ev_active (ANHE_w (heap [k])) = k;

        k = c;
    }

    heap [k] = he;
    ev_active (ANHE_w (he)) = k;
}

        2叉堆的实现原理与4叉堆一样,不再赘述。

 

4:向上调整堆

void upheap (ANHE *heap, int k)
{
    ANHE he = heap [k];

    for (;;)
    {
        int p = HPARENT (k);

        if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
            break;

        heap [k] = heap [p];
        ev_active (ANHE_w (heap [k])) = k;
        k = p;
    }

    heap [k] = he;
    ev_active (ANHE_w (he)) = k;
}

         代码较简单,要调整的节点下标为k,首先得到其父节点下标p,然后判断heap[k]和heap[p]的关系作出调整。

 

5:其余代码

void adjustheap (ANHE *heap, int N, int k)
{
    if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
        upheap (heap, k);
    else
        downheap (heap, N, k);
}

/* rebuild the heap: this function is used only once and executed rarely */
void reheap (ANHE *heap, int N)
{
    int i;

    /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
    /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
    for (i = 0; i < N; ++i)
        upheap (heap, i + HEAP0);
}


 

posted @ 2015-10-17 13:15  gqtc  阅读(358)  评论(0编辑  收藏  举报