财政收支预测

1.数据探索

1.1数据描述统计以及相关系数分析

import numpy as np
import pandas as pd
inputfile = 'data.csv' #输入的数据文件
data = pd.read_csv(inputfile) #读取数据
r = [data.min(), data.max(), data.mean(), data.std()] #依次计算最小值、最大值、均值、标准差
r = pd.DataFrame(r, index = ['Min', 'Max', 'Mean', 'STD']).T  #计算相关系数矩阵
print("描述统计分析结果:\n",np.round(r, 2)) #保留两位小数
print("相关系数矩阵:\n",np.round(data.corr(method = 'pearson'), 2)) #计算相关系数矩阵,保留两位

1.2 绘制相关性热力图

#相关性热力图
import matplotlib.pyplot as plt
import seaborn as sns
plt.subplots(figsize=(16,9))
correlation_mat = data.corr()
sns.heatmap(correlation_mat, annot=True, cbar=True, square=True, fmt='.2f', annot_kws={'size': 10})
plt.show()

可知x11对其影响最小。

2.灰色预测算法+SVR算法

 

2.1 losso 回归选取

 

import numpy as np
import pandas as pd
from sklearn.linear_model import Lasso

inputfile = 'data.csv'  # 输入的数据文件
data = pd.read_csv(inputfile)  # 读取数据
lasso = Lasso(1000)  # 调用Lasso()函数,设置λ的值为1000
lasso.fit(data.iloc[:,0:13],data['y'])
print('相关系数为:',np.round(lasso.coef_,5))  # 输出结果,保留五位小数

print('相关系数非零个数为:',np.sum(lasso.coef_ != 0))  # 计算相关系数非零的个数

mask = lasso.coef_ != 0  # 返回一个相关系数是否为零的布尔数组
print('相关系数是否为零:',mask)
mask=np.append(mask,True)
outputfile ='new_reg_data.csv'  # 输出的数据文件
new_reg_data = data.iloc[:, mask]  # 返回相关系数非零的数据
new_reg_data.to_csv(outputfile)  # 存储数据
print('输出数据的维度为:',new_reg_data.shape)  # 查看输出数据的维度

 

2.2 构建灰度预测模型并预测

 

 

import sys
sys.path.append('code')  # 设置路径
import numpy as np
import pandas as pd
from GM11 import GM11  # 引入自编的灰色预测函数

inputfile1 = 'new_reg_data.csv'  # 输入的数据文件
inputfile2 = 'data.csv'  # 输入的数据文件
new_reg_data = pd.read_csv(inputfile1)  # 读取经过特征选择后的数据
data = pd.read_csv(inputfile2)  # 读取总的数据
new_reg_data.index = range(1994, 2014)
new_reg_data.loc[2014] = None
new_reg_data.loc[2015] = None
l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
for i in l:
  f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0]
  new_reg_data.loc[2014,i] = f(len(new_reg_data)-1)  # 2014年预测结果
  new_reg_data.loc[2015,i] = f(len(new_reg_data))  # 2015年预测结果
  new_reg_data[i] = new_reg_data[i].round(2)  # 保留两位小数
outputfile = 'new_reg_data_GM11.xls'  # 灰色预测后保存的路径
y = list(data['y'].values)  # 提取财政收入列,合并至新数据框中
y.extend([np.nan,np.nan])
new_reg_data['y'] = y
new_reg_data.to_excel(outputfile)  # 结果输出
print('预测结果为:\n',new_reg_data.loc[2014:2015,:])  # 预测结果展示

 

2.3 构建SVR回归预测模型

import matplotlib.pyplot as plt
from sklearn.svm import LinearSVR

inputfile = 'new_reg_data_GM11.xls'  # 灰色预测后保存的路径
data = pd.read_excel(inputfile)  # 读取数据
feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']  # 属性所在列
data_train = data.iloc[0:20].copy()  # 取2014年前的数据建模
data_mean = data_train.mean()
data_std = data_train.std()
data_train = (data_train - data_mean)/data_std  # 数据标准化
x_train = data_train[feature].values  # 属性数据
y_train = data_train['y'].values # 标签数据

linearsvr = LinearSVR()  # 调用LinearSVR()函数
linearsvr.fit(x_train,y_train)
x = ((data[feature] - data_mean[feature])/data_std[feature]).values  # 预测,并还原结果。
data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
outputfile = 'new_reg_data_GM11_revenue.xls'  # SVR预测后保存的结果
data.to_excel(outputfile)

print('真实值与预测值分别为:\n',data[['y','y_pred']])

fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*'])  # 画出预测结果图
plt.show()

经过模型建立后,所得的2014和2015预测收入为:

2014  NaN 2187.364382
2015  NaN 2538.384794

 

 3.ARIMA模型

3.1数据读取

import numpy as np
import pandas as pd
inputfile = 'data.csv' #输入的数据文件
data = pd.read_csv(inputfile) #读取数据

3.2时序图和自相关图

# 时序图
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
data.plot()
plt.show()

# 自相关图
from statsmodels.graphics.tsaplots import plot_acf
plot_acf(data['y']).show()

3.3 平稳性检测

# 平稳性检测
from statsmodels.tsa.stattools import adfuller as ADF
print('原始序列的ADF检验结果为:', ADF(data['y']))
# 返回值依次为adf、pvalue、usedlag、nobs、critical values、icbest、regresults、resstore
# 差分后的结果
D_data = data.diff().dropna()
feature = ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x9', 'x10', 'x11', 'x12', 'x13', 'y']  # 属性所在列
D_data.columns = feature
D_data.plot()  # 时序图
plt.show()
plot_acf(D_data['y']).show()  # 自相关图
from statsmodels.graphics.tsaplots import plot_pacf
plot_pacf(D_data['y']).show()  # 偏自相关图
print('差分序列的ADF检验结果为:', ADF(D_data['y']))  # 平稳性检测

3.4白噪声检验

# 白噪声检验
from statsmodels.stats.diagnostic import acorr_ljungbox
print('差分序列的白噪声检验结果为:', acorr_ljungbox(D_data['y'], lags=1))  # 返回统计量和p值

3.5结果预测

 

from statsmodels.tsa.arima_model import ARIMA

# 定阶
data['y'] = data['y'].astype(float) 
pmax = int(len(D_data)/10)  # 一般阶数不超过length/10
qmax = int(len(D_data)/10)  # 一般阶数不超过length/10
bic_matrix = []  # BIC矩阵
for p in range(pmax+1):
  tmp = []
  for q in range(qmax+1):
    try:  # 存在部分报错,所以用try来跳过报错。
      tmp.append(ARIMA(data['y'], (p,1,q)).fit().bic)
    except:
      tmp.append(None)
  bic_matrix.append(tmp)

bic_matrix = pd.DataFrame(bic_matrix)  # 从中可以找出最小值

p,q = bic_matrix.stack().idxmin()  # 先用stack展平,然后用idxmin找出最小值位置。
print('BIC最小的p值和q值为:%s、%s' %(p,q)) 
model = ARIMA(data['y'], (p,1,q)).fit()  # 建立ARIMA(0, 1, 1)模型
print('模型报告为:\n', model.summary2())
print('预测未来2年,其预测结果、标准误差、置信区间如下:\n', model.forecast(2))

 

4、结论

综上,灰色预测算法+SVR算法预测结果更好。

 

posted @ 2022-04-01 23:41  猪小叶  阅读(117)  评论(0编辑  收藏  举报