基本和第一个一样的流程
cuda环境安装教程
https://www.cnblogs.com/gooutlook/p/17677113.html
下载工程
git clone https://github.com/graphdeco-inria/reduced-3dgs --recursive
工程环境 安装指令
# 官网 https://github.com/graphdeco-inria/reduced-3dgs # ============= 1从文件创建环境 ============ 容易在submodules安装时候报错卡死 conda env create --file environment.yml # 删除环境指令(如果需要) conda env remove --name gaussian_splatting # ============= 2手动创建 =================== # 2-1 创建环境 conda create --name gaussian_splatting # 2-2 激活环境 conda activate gaussian_splatting # 2-3 安装在线库 pip install --upgrade setuptools wheel pip install --upgrade pip==22.3.1 pip install plyfile pip install tqdm pip install urllib3==2.2.1 pip install pandas pip install torch==1.12.1+cu116 torchaudio==0.12.1+cu116 torchvision==0.13.1+cu116 -f https://download.pytorch.org/whl/torch_stable.html # 2-4 安装离线库 代码文件夹自带的库 #pip install ./submodules/diff-gaussian-rasterization 无效 #pip install ./submodules/simple-knn 无效 # 需要用sudo 模式 指定目标环境的python去安装 sudo /home/dongdong/1sorftware/1work/yes/envs/gaussian_splatting/bin/python3.7 -m pip install submodules/simple-knn sudo /home/dongdong/1sorftware/1work/yes/envs/gaussian_splatting/bin/python3.7 -m pip install submodules/diff-gaussian-rasterization # 0查看内存情况====================== watch -n 1 nvidia-smi # 1激活环境========================== conda activate py37gaosi 老版本 conda activate gaussian_splatting 最新版本 # 2训练============================= 训练时候 其他占用显卡内存的软件需要关掉例如colmap 不然内存会爆满 # 2-1 最简单的训练指令 python ./train.py -s ../data/tandt/truck/ -m ../data/tandt/truck/train_out/ # 2-2 指定参数的训练指令 # --resolution / -r 1 参数 2 原来图像的1/2分辨率 。 参数 -1 如果超过1600分辨率, 默认强行缩放,除非指定参数为1才是原分辨率 # -s 数据文件夹 # --model-path / -m 训练结果存放位置 # --data_device cpu gpu 选择训练模式 # --sh_degree 0 所要使用的球谐函数的阶数(不大于 3)。3默认情况下。 给成0 减少内存 # 还可以尝试设置--test_iterations为-1以避免测试期间内存峰值 默认是7000和30000轮次测试一次 # --data_device cuda 或者 cpu // cuda默认使用。 如果使用 cpu 这将减少 VRAM 消耗,但会稍微减慢训练速度。 # --iterations 最大训练次数 默认30000 且 默认7000,30000次保存模型和测试模型 # --test_iterations 默认7000 30000测试数据 给-1 可以执行不测试,从而减少瞬间显卡内存峰值占用,以免显卡内存不够爆了 python ./train.py -s /home/dongdong/2project/0data/NWPU_cplmap/ -m /home/dongdong/2project/0data/NWPU_cplmap/train_out/ --resolution 1 --data_device cpu --sh_degree 3 --iterations 7100 # 3可视化============================== # 3-1 训练过程中查看 sudo ./SIBR_viewers/install/bin/SIBR_remoteGaussian_app # 3-2 代码渲染图 # --models baseline 使用标准的模型渲染(相对于降低一半精度的quantised_half) # -m <训练好的模型路径> # -iteration -1 <使用哪一轮训练的模型> 默认 -1 训练次数最大的模型 # --skip_train 0 跳过训练集的图像渲染 默认0 渲染 # python ./render.py -m /home/dongdong/2project/0data/NWPU_cplmap/train_out_v1_sh0_num30000/ --models baseline # 3-2 训练以后查看 # --模型路径 / -m # --iteration 使用哪一轮训练的模型 默认 -1 训练次数最大的模型 cd /home/dongdong/2project/2_3DGaosi/gaussian-splatting sudo ./SIBR_viewers/install/bin/SIBR_gaussianViewer_app -m /home/dongdong/2project/0data/NWPU_cplmap/train_out/
python ./train.py -s /home/dongdong/2project/0data/RTK/300_400 -m /home/dongdong/2project/0data/RTK/300_400/gs_out --resolution 3 --data_device cpu --sh_degree 0 --iterations 30010
编译可视化软件
参考教程
https://www.cnblogs.com/gooutlook/p/17677113.html
1编译前注销conda环境,不然会干扰库的查找。
# Dependencies sudo apt install -y libglew-dev libassimp-dev libboost-all-dev libgtk-3-dev libopencv-dev libglfw3-dev libavdevice-dev libavcodec-dev libeigen3-dev libxxf86vm-dev libembree-dev # Project setup cd SIBR_viewers cmake -Bbuild . -DCMAKE_BUILD_TYPE=Release # add -G Ninja to build faster cmake --build build -j24 --target install
修稿后的编译指令
下载 embree-3.13.5.x86_64 指定路径
cmake -Bbuild . -D embree_DIR=/home/dongdong/2project/2_3DGaosi/reduced-3dgs/SIBR_viewers/embree-3.13.5.x86_64.linux/lib/cmake/embree-3.13.5/ -DCMAKE_BUILD_TYPE=Release
编译前注销conda环境
ctrl+h 显示隐藏文件
问题1
如果opencv不是安装在默认系统环境,手动指定
set(CMAKE_PREFIX_PATH "/home/dongdong/1sorftware/1work/opencv/opencv455/install")
opencv 安装路径
问题2 如果找不到eigen3
eigen3默认装在
include_directories("/usr/local/include/eigen3")
问题3 MeshData::setTransformation 报错
error: cannot bind non-const lvalue reference of type ‘sibr::Matrix4f&’ {aka ‘Eigen::Matrix<float, 4, 4, 2>&’} to an rvalue of type ‘sibr::Matrix4f’ {aka ‘Eigen::Matrix<float, 4, 4, 2>’}
这个错误表明你尝试将一个右值绑定到一个非const的左值引用上。在C++中,非const的左值引用不能绑定到右值。你可以尝试以下几种方法解决这个问题:
-
将引用改为const左值引用:如果你只需读取对象,可以使用const左值引用。
修改MeshData::setTransformation 函数 添加const修饰符号
MeshData& MeshData::setTransformation(const sibr::Matrix4f& tr) { // TODO: insérer une instruction return ici transformation = tr; return *this; }
编译成功
但是运行报错
但是可以直接查看第一个版本生成的模型
第二个版本的模型,貌似带球鞋系数=3的才能查看
python ./render.py -m /home/dongdong/2project/0data/RTK/300_400/gs_out --iteration 30000 --models baseline
自己写的简易版本查看器
训练好的模型路径
要使用的迭代次数
要使用的模型质量
# 773.5 MB - 2.33G -5.48G 峰值 4.6G python ./render.py -m /home/dongdong/2project/0data/NWPU/gs_out/train1_out_sh1_num7000/ --iteration 7010 --models baseline # 269.1 MB - 2.454G -5.48G 峰值 4.6G python ./render.py -m /home/dongdong/2project/0data/NWPU/gs_out/train1_out_sh1_num7000/ --iteration 7010 --models quantised # 218.6 MB - 2.454G -5.48G 峰值 4.6G python ./render.py -m /home/dongdong/2project/0data/NWPU/gs_out/train1_out_sh1_num7000/ --iteration 7010 --models quantised_half
手动调整位置
# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import cv2 import numpy as np import torch from scene import Scene import os from tqdm import tqdm from os import makedirs from gaussian_renderer import render import torchvision from utils.general_utils import safe_state from argparse import ArgumentParser from arguments import ModelParams, PipelineParams, get_combined_args from gaussian_renderer import GaussianModel import pandas as pd import torch from torch import nn import numpy as np from utils.graphics_utils import getWorld2View2, getProjectionMatrix class Camera_view(nn.Module): def __init__(self, img_id, R, FoVx, FoVy, image_width,image_height, t=np.array([0.0, 0.0, 0.0]), scale=1.0 ): super(Camera_view, self).__init__() self.img_id = img_id # 这里默认是 相机到世界 也就是相机在世界坐标系下的位姿 self.R = R self.t = t self.scale = scale # 尺度 展示没有 self.FoVx = FoVx self.FoVy = FoVy self.image_width = image_width self.image_height = image_height self.zfar = 100.0 self.znear = 0.01 # 相机在世界坐标系下的位姿 相机到世界的变换矩阵 sRt_c2w = np.zeros((4, 4)) #标准的矩阵转置 sRt_c2w[:3, :3] = self.R sRt_c2w[:3, 3] = self.scale*self.t sRt_c2w[3, 3] = 1.0 # 3D高斯渲染 需要的是 一个3D高斯球(x,y,z) 投影到相机像素画面 ,也就是世界到相机的变换矩阵, 所以需要对相机到世界矩阵sRt转置取逆 #3D世界到3D相机坐标系 变换矩阵 #self.world_view_transform = torch.tensor(np.float32(sRt_c2w)).transpose(0, 1).cuda() # self.world_view_transform = torch.tensor(np.float32(sRt_c2w)).transpose(0, 1).cuda() # ''' #将3D相机坐标投影到2D相机像素平面的投影矩阵 # 真实相机成像模型中 该矩阵是由 fx fy cx cy构造的 # 虚拟渲染相机模型中 该矩阵是由 znear 默认0.01 近平面 zfar 默认100 远平面 视场角FoVx FoVy构造的。计算视场角FoVx=fx/(W/2),FoVy=fy/(H/2) # 两者关系: # 虚拟渲染相机用fx和fy表示的话 ,最后都是变为统一的形式。 (相机前方为z正轴的坐标系) u=fx*x/z-W/2 v=fy*y/z-H/2 w=-zfar*n/z (像素坐标不关心投影后的z值,无用舍去,所以最终znear和zfar对像素坐标u,v没有影响。) # 真实采集相机参数 fx fy cx=实际物理值 cy=实际物理值 成像分辨率 W*H # 渲染虚拟相机参数 fx fy cx=W/2 cy=H/2 成像分辨率 W*H ''' self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0, 1).cuda() # 3D世界点投影到2D相机像素坐标 变换矩阵 self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0) self.inverse_full_proj_transform = self.full_proj_transform.inverse()# 后面貌似没用到 self.camera_center = self.world_view_transform[3, :3] #相机中心的世界坐标 def __del__(self): # 如果几个数据使用.cuda() 创建的,会自动存到显卡内存,多次渲染积累造成内存爆满,每次用完需要指定回收释放。否则不会随着程序(cpu)关闭而销毁。 # 删除张量并释放 GPU 内存 del self.world_view_transform del self.full_proj_transform del self.inverse_full_proj_transform del self.camera_center torch.cuda.empty_cache() print("cuda占用回收.") #训练中间只会保存 原始模型 。 训练结束最后一次会保存原始模型baseline 精度减半模型quantised 精度减半减半模型 quantised_half,三种不同模型供测试。 # 要测试的模型类型。标准的、基准的模型 “baseline”和将模型的权重或激活值量化为半精度(16-bit)格式“quantised_half”之间的选择 #功能:量化可以显著降低计算量和内存消耗,但可能会引入一些精度损失。具体来说,“quantised_half”可能指的是将模型参数或中间激活值量化为16-bit浮点数(half precision),从而减少存储需求并提高计算效率。 #半浮点量化 如果采用半浮点量化,则码本条目以及位置参数将以半精度存储。这意味着使用 16 位而不是 32 位,因此存储的是 float16 而不是 float32。 # #但是,由于格式.ply不允许 float16 类型的数字,因此参数将指针转换为 int16 并以此形式存储。 models_configuration = { 'baseline': { 'quantised': False, 'half_float': False, 'name': 'point_cloud.ply' }, 'quantised': { 'quantised': True, 'half_float': False, 'name': 'point_cloud_quantised.ply' }, 'quantised_half': { 'quantised': True, 'half_float': True, 'name': 'point_cloud_quantised_half.ply' }, } def measure_fps(iteration, views, gaussians, pipeline, background, pcd_name): fps = 0 for _, view in enumerate(views): render(view, gaussians, pipeline, background, measure_fps=False) for _, view in enumerate(views): fps += render(view, gaussians, pipeline, background, measure_fps=True)["FPS"] fps *= 1000 / len(views) return pd.Series([fps], index=["FPS"], name=f"{pcd_name}_{iteration}") def render_img(view, gaussians, # 模型 pipeline, background, ): #for idx, view in enumerate(tqdm(views, desc="Rendering progress")): # view 拷贝 # gaussians 继承 pipeline 拷贝 background 继承 rendering = render(view, gaussians, pipeline, background)["render"] #fps = render(view, gaussians, pipeline, background, measure_fps=True)["FPS"] #gt = view.original_image[0:3, :, :] # 将渲染图像转换为 NumPy 数组 rendering_np = rendering.cpu().numpy() # 如果张量是 (C, H, W) 形式,需要调整为 (H, W, C) if rendering_np.shape[0] == 3: rendering_np = np.transpose(rendering_np, (1, 2, 0)) # 将 RGB 转换为 BGR opencv_img = rendering_np[..., ::-1] # 及时清空显卡数据缓存 del rendering del rendering_np torch.cuda.empty_cache() # # 显示图像 # cv2.imshow('Rendering', opencv_img) # cv2.waitKey(0) # 等待用户按键 return opencv_img def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, ): with torch.no_grad(): print("dataset._model_path 训练渲染保存的模型总路径",dataset.model_path) print("dataset._source_path 原始输入SFM数据路径",dataset.source_path) print("dataset.sh_degree 球谐系数",dataset.sh_degree) print("dataset.white_background 是否白色背景",dataset.sh_degree) gaussians = GaussianModel(dataset.sh_degree) bg_color = [1,1,1] if dataset.white_background else [0, 0, 0] background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") # 加载什么精度模型 model = args.models print("渲染实际加载的训练模型精度类型 (标准baseline 半精度quantised 半半精度half_float)",model) name = models_configuration[model]['name'] quantised = models_configuration[model]['quantised'] half_float = models_configuration[model]['half_float'] try: # 选择什么训练次数模型 model_path = dataset.model_path+"/point_cloud/iteration_"+str(iteration)+"/" model_path=os.path.join(model_path,name) print("渲染实际加载的训练模型",model_path) gaussians.load_ply(model_path, quantised=quantised, half_float=half_float) except: raise RuntimeError(f"Configuration {model} with name {name} not found!") height, width = 1080, 1920 img_opencv = np.ones((height, width, 3), dtype=np.uint8) * 255 cv2.namedWindow('Rendering_Img', cv2.WINDOW_NORMAL) x=0 y=0 z=0 i=0 step_=0.1 while True: new_img=0 cv2.imshow('Rendering_Img', img_opencv) key = cv2.waitKey(1) & 0xFF if key == 27: # 按下 'q' 键 print("退出") break elif key == ord('w'): # 按下 's' 键 print("x前进") x=x+step_ i=i+1 new_img=1 elif key == ord('s'): # 按下 's' 键 print("x后退") x=x-step_ i=i+1 new_img=1 elif key == ord('a'): # 按下 's' 键 print("y前进") y=y+step_ i=i+1 new_img=1 elif key == ord('d'): # 按下 's' 键 print("y后退") y=y-step_ i=i+1 new_img=1 elif key == ord('q'): # 按下 's' 键 print("z前进") z=z+step_ i=i+1 new_img=1 elif key == ord('e'): # 按下 's' 键 print("z后退") z=z-step_ i=i+1 new_img=1 if new_img==1: # 相机到世界的旋转矩阵 R_c2w = np.array([ [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0] ]) # 相机到世界的平移矩阵 也就是相机在世界坐标系下的位置 t_c2w=np.array([x, y, z]) scale_c2w=1 view = Camera_view(img_id=i, R=R_c2w, t=t_c2w, scale=scale_c2w, FoVx=90, FoVy=90, image_width=width, image_height=height) #df = pd.DataFrame() img_opencv = render_img( view, gaussians, pipeline, background) #cv2.imwrite('random_white_image.jpg', white_image) if __name__ == "__main__": # Set up command line argument parser parser = ArgumentParser(description="渲染测试脚本") model = ModelParams(parser, sentinel=True) pipeline = PipelineParams(parser) parser.add_argument("--iteration", default=30000, type=int) parser.add_argument("--models", default='baseline',type=str) #'baseline','quantised' 'quantised_half' parser.add_argument("--quiet", action="store_true") #标记以省略写入标准输出管道的任何文本。 args = get_combined_args(parser) # 从cfg_args加载路径 safe_state(args.quiet) render_sets(model.extract(args), args.iteration, pipeline.extract(args))
训练速度
训练指令
python ./train.py -s /home/dongdong/2project/0data/NWPU_cplmap/ -m /home/dongdong/2project/0data/NWPU_cplmap/train_out/ --resolution 1 --data_device cpu --sh_degree 0
老版本
训练大约 10g运行内存
3D 高斯渲染图像 opencv刷图
# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import cv2 import numpy as np import torch from scene import Scene import os from tqdm import tqdm from os import makedirs from gaussian_renderer import render import torchvision from utils.general_utils import safe_state from argparse import ArgumentParser from arguments import ModelParams, PipelineParams, get_combined_args from gaussian_renderer import GaussianModel import pandas as pd import torch from torch import nn import numpy as np from utils.graphics_utils import getWorld2View2, getProjectionMatrix from scene.colmap_loader import * from scene.dataset_readers import * # 要选的视角 class Camera_view(nn.Module): def __init__(self, img_id, R, FoVx, FoVy, image_width,image_height, t=np.array([0.0, 0.0, 0.0]), scale=1.0 ): super(Camera_view, self).__init__() self.img_id = img_id # 这里默认是 相机到世界 也就是相机在世界坐标系下的位姿 self.R = R self.t = t self.scale = scale # 尺度 展示没有 self.FoVx = FoVx self.FoVy = FoVy self.image_width = image_width self.image_height = image_height self.zfar = 100.0 self.znear = 0.01 # 相机在世界坐标系下的位姿 相机到世界的变换矩阵 sRt_c2w = np.zeros((4, 4)) #标准的矩阵转置 sRt_c2w[:3, :3] = self.R sRt_c2w[:3, 3] = self.scale*self.t sRt_c2w[3, 3] = 1.0 # 3D高斯渲染 需要的是 一个3D高斯球(x,y,z) 投影到相机像素画面 ,也就是世界到相机的变换矩阵, 所以需要对相机到世界矩阵sRt转置取逆 #3D世界到3D相机坐标系 变换矩阵 #self.world_view_transform = torch.tensor(np.float32(sRt_c2w)).transpose(0, 1).cuda() # self.world_view_transform = torch.tensor(np.float32(sRt_c2w)).transpose(0, 1).cuda() # ''' #将3D相机坐标投影到2D相机像素平面的投影矩阵 # 真实相机成像模型中 该矩阵是由 fx fy cx cy构造的 # 虚拟渲染相机模型中 该矩阵是由 znear 默认0.01 近平面 zfar 默认100 远平面 视场角FoVx FoVy构造的。计算视场角FoVx=fx/(W/2),FoVy=fy/(H/2) # 两者关系: # 虚拟渲染相机用fx和fy表示的话 ,最后都是变为统一的形式。 (相机前方为z正轴的坐标系) u=fx*x/z-W/2 v=fy*y/z-H/2 w=-zfar*n/z (像素坐标不关心投影后的z值,无用舍去,所以最终znear和zfar对像素坐标u,v没有影响。) # 真实采集相机参数 fx fy cx=实际物理值 cy=实际物理值 成像分辨率 W*H # 渲染虚拟相机参数 fx fy cx=W/2 cy=H/2 成像分辨率 W*H ''' self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0, 1).cuda() # 3D世界点投影到2D相机像素坐标 变换矩阵 self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0) self.inverse_full_proj_transform = self.full_proj_transform.inverse()# 后面貌似没用到 self.camera_center = self.world_view_transform[3, :3] #相机中心的世界坐标 def __del__(self): # 如果几个数据使用.cuda() 创建的,会自动存到显卡内存,多次渲染积累造成内存爆满,每次用完需要指定回收释放。否则不会随着程序(cpu)关闭而销毁。 # 删除张量并释放 GPU 内存 del self.world_view_transform del self.full_proj_transform del self.inverse_full_proj_transform del self.camera_center torch.cuda.empty_cache() #print("cuda占用回收.") #训练中间只会保存 原始模型 。 训练结束最后一次会保存原始模型baseline 精度减半模型quantised 精度减半减半模型 quantised_half,三种不同模型供测试。 # 要测试的模型类型。标准的、基准的模型 “baseline”和将模型的权重或激活值量化为半精度(16-bit)格式“quantised_half”之间的选择 #功能:量化可以显著降低计算量和内存消耗,但可能会引入一些精度损失。具体来说,“quantised_half”可能指的是将模型参数或中间激活值量化为16-bit浮点数(half precision),从而减少存储需求并提高计算效率。 #半浮点量化 如果采用半浮点量化,则码本条目以及位置参数将以半精度存储。这意味着使用 16 位而不是 32 位,因此存储的是 float16 而不是 float32。 # #但是,由于格式.ply不允许 float16 类型的数字,因此参数将指针转换为 int16 并以此形式存储。 models_configuration = { 'baseline': { 'quantised': False, 'half_float': False, 'name': 'point_cloud.ply' }, 'quantised': { 'quantised': True, 'half_float': False, 'name': 'point_cloud_quantised.ply' }, 'quantised_half': { 'quantised': True, 'half_float': True, 'name': 'point_cloud_quantised_half.ply' }, } def measure_fps(iteration, views, gaussians, pipeline, background, pcd_name): fps = 0 for _, view in enumerate(views): render(view, gaussians, pipeline, background, measure_fps=False) for _, view in enumerate(views): fps += render(view, gaussians, pipeline, background, measure_fps=True)["FPS"] fps *= 1000 / len(views) return pd.Series([fps], index=["FPS"], name=f"{pcd_name}_{iteration}") def rotation_matrix_x(theta_x): """ 创建绕x轴旋转的旋转矩阵 """ c, s = np.cos(theta_x), np.sin(theta_x) return np.array([ [1, 0, 0], [0, c, -s], [0, s, c] ]) def rotation_matrix_y(theta_y): """ 创建绕y轴旋转的旋转矩阵 """ c, s = np.cos(theta_y), np.sin(theta_y) return np.array([ [c, 0, s], [0, 1, 0], [-s, 0, c] ]) def rotation_matrix_z(theta_z): """ 创建绕z轴旋转的旋转矩阵 """ c, s = np.cos(theta_z), np.sin(theta_z) return np.array([ [c, -s, 0], [s, c, 0], [0, 0, 1] ]) def combined_rotation_matrix(theta_x, theta_y, theta_z): """ 通过绕x、y、z轴的旋转角度创建组合旋转矩阵 """ Rx = rotation_matrix_x(theta_x) Ry = rotation_matrix_y(theta_y) Rz = rotation_matrix_z(theta_z) # 旋转矩阵的组合顺序:绕z轴 -> 绕y轴 -> 绕x轴 R = Rz @ Ry @ Rx return R # # 示例角度(以弧度为单位) # theta_x = np.radians(30) # 30度 # theta_y = np.radians(45) # 45度 # theta_z = np.radians(60) # 60度 # # 计算旋转矩阵 # R = combined_rotation_matrix(theta_x, theta_y, theta_z) # print("旋转矩阵 R:") # print(R) # 渲染单个视角图像并转化opencv图像 def render_img(view, gaussians, # 模型 pipeline, background, ): #for idx, view in enumerate(tqdm(views, desc="Rendering progress")): # view 拷贝 # gaussians 继承 pipeline 拷贝 background 继承 rendering = render(view, gaussians, pipeline, background)["render"] #fps = render(view, gaussians, pipeline, background, measure_fps=True)["FPS"] #gt = view.original_image[0:3, :, :] # 将渲染图像转换为 NumPy 数组 rendering_np = rendering.cpu().numpy() # 如果张量是 (C, H, W) 形式,需要调整为 (H, W, C) if rendering_np.shape[0] == 3: rendering_np = np.transpose(rendering_np, (1, 2, 0)) # 将 RGB 转换为 BGR opencv_img = rendering_np[..., ::-1] # 及时清空显卡数据缓存 del rendering del rendering_np torch.cuda.empty_cache() # # 显示图像 # cv2.imshow('Rendering', opencv_img) # cv2.waitKey(0) # 等待用户按键 return opencv_img # 从slam读取相机参数 def Read_caminfo_from_orbslam(path): # wait to do pass # 从colmap读取相机参数 def Read_caminfo_from_colmap(path): cam_intrinsics={} cam_extrinsics={} # 自带的代码 ''' from scene.colmap_loader import * from scene.dataset_readers import * ''' try: cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin") cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin") cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file) cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file) except: cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt") cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt") cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file) cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file) ''' 加载相机内参 read_intrinsics_text() # Camera list with one line of data per camera: # CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[] # Number of cameras: 1 1 PINHOLE 1920 1080 1114.0581411159471 1108.508409747483 960 540 ''' cam_id=1 # 从1开始。以一个相机模型 这里默认colmap一般只有一个相机. 但是可能存在GNSS照片和视频抽离的帧,2个相机模型参数 cam_parameters=cam_intrinsics[cam_id] print("相机id",cam_parameters.id) print("相机模型",cam_parameters.model) print("图像宽度",cam_parameters.width) print("图像高度",cam_parameters.height) print("相机内参 fx ",cam_parameters.params[0]) print("相机内参 fy ",cam_parameters.params[1]) FovY=0 FovX=0 if cam_parameters.model=="SIMPLE_PINHOLE": focal_length_x = cam_parameters.params[0] FovY = focal2fov(focal_length_x, cam_parameters.height) FovX = focal2fov(focal_length_x, cam_parameters.width) elif cam_parameters.model=="PINHOLE": focal_length_x = cam_parameters.params[0] focal_length_y = cam_parameters.params[1] FovY = focal2fov(focal_length_y, cam_parameters.height) FovX = focal2fov(focal_length_x, cam_parameters.width) else: assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!" cam_info = { "width": cam_parameters.width, "height": cam_parameters.height, "fx": cam_parameters.params[0], "fy": cam_parameters.params[1], "FovX": FovX, "FovY": FovY } return cam_info def render_sets_handMode(dataset : ModelParams, iteration : int, pipeline : PipelineParams, ): with torch.no_grad(): print("dataset._model_path 训练渲染保存的模型总路径",dataset.model_path) print("dataset._source_path 原始输入SFM数据路径",dataset.source_path) print("dataset.sh_degree 球谐系数",dataset.sh_degree) print("dataset.white_background 是否白色背景",dataset.sh_degree) cam_info = Read_caminfo_from_colmap(dataset.source_path) height, width = cam_info["height"], cam_info["width"] Fovx,Fovy = cam_info["FovX"], cam_info["FovY"] img_opencv = np.ones((height, width, 3), dtype=np.uint8) * 0 cv2.namedWindow('Rendering_Img', cv2.WINDOW_NORMAL) i=0 # 渲染的图像计数 id x=0 # 位置 y=0 z=0 step_=0.1 theta_x=0 # 旋转角度 theta_y=0 theta_z=0 step_theta=1 # 加载渲染器 gaussians = GaussianModel(dataset.sh_degree) bg_color = [1,1,1] if dataset.white_background else [0, 0, 0] background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") # 加载什么精度模型 model = args.models print("渲染实际加载的训练模型精度类型 (标准baseline 半精度quantised 半半精度half_float)",model) name = models_configuration[model]['name'] quantised = models_configuration[model]['quantised'] half_float = models_configuration[model]['half_float'] try: # 选择什么训练次数模型 model_path = dataset.model_path+"/point_cloud/iteration_"+str(iteration)+"/" model_path=os.path.join(model_path,name) print("渲染实际加载的训练模型",model_path) gaussians.load_ply(model_path, quantised=quantised, half_float=half_float) except: raise RuntimeError(f"Configuration {model} with name {name} not found!") while True: new_img=0 image = cv2.UMat(img_opencv) # 原始渲染图不能被污染 要发送slam回去,新创建图可视化 cv2.UMat转换后才可以 cv2.putText # 设置文字的参数 font_scale = 2 # 大小 thickness = 2 # 粗细 text1 ="position_xyz: " + str(round(x, 2))+" , "+str(round(y, 2)) +" , "+ str(round(z, 2)) position1 = (10, 60) # 文字的位置 cv2.putText(image, text1, position1, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 0, 0), thickness) text2 = "theta_xyz: " + str(round(theta_x, 2))+" , "+str(round(theta_y, 2)) +" , "+ str(round(theta_z, 2)) position2 = (10, 120) # 文字的位置 cv2.putText(image, text2, position2, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 255), thickness) cv2.imshow('Rendering_Img', image) #cv2.imshow('Rendering_Img', img_opencv)# imshow 不需要额外 cv2.UMat转换 key = cv2.waitKey(1) & 0xFF if key == 27: # 按下 'q' 键 print("退出") break elif key == ord('w'): # 按下 's' 键 print("x前进") x=x+step_ i=i+1 new_img=1 elif key == ord('s'): # 按下 's' 键 print("x后退") x=x-step_ i=i+1 new_img=1 elif key == ord('a'): # 按下 's' 键 print("y前进") y=y+step_ i=i+1 new_img=1 elif key == ord('d'): # 按下 's' 键 print("y后退") y=y-step_ i=i+1 new_img=1 elif key == ord('q'): # 按下 's' 键 print("z前进") z=z+step_ i=i+1 new_img=1 elif key == ord('e'): # 按下 's' 键 print("z后退") z=z-step_ i=i+1 new_img=1 elif key == ord('i'): # 按下 's' 键 print("x旋转+") theta_x=theta_x+step_theta if(theta_x>360 or theta_x<-360): theta_x=0 i=i+1 new_img=1 elif key == ord('k'): # 按下 's' 键 print("x旋转-") theta_x=theta_x-step_theta if(theta_x>360 or theta_x<-360): theta_x=0 i=i+1 new_img=1 elif key == ord('j'): # 按下 's' 键 print("y旋转+") theta_y=theta_y+step_theta if(theta_y>360 or theta_y<-360): theta_y=0 i=i+1 new_img=1 elif key == ord('l'): # 按下 's' 键 print("y旋转-") theta_y=theta_y-step_theta if(theta_y>360 or theta_y<-360): theta_y=0 i=i+1 new_img=1 elif key == ord('u'): # 按下 's' 键 print("z旋转+") theta_z=theta_z+step_theta if(theta_z>360 or theta_z<-360): theta_z=0 i=i+1 new_img=1 elif key == ord('o'): # 按下 's' 键 print("z旋转-") theta_z=theta_z-step_theta if(theta_z>360 or theta_z<-360): theta_z=0 i=i+1 new_img=1 if new_img==1: # # 示例角度(以弧度为单位) theta_x_pi = np.radians(theta_x) # 30度 theta_y_pi = np.radians(theta_y) # 45度 theta_z_pi = np.radians(theta_z) # 60度 # # 计算旋转矩阵 R_c2w = combined_rotation_matrix(theta_x_pi, theta_y_pi, theta_z_pi) # 相机到世界的旋转矩阵 # R_c2w = np.array([ # [1.0, 0.0, 0.0], # [0.0, 1.0, 0.0], # [0.0, 0.0, 1.0] # ]) # print("旋转矩阵 R:") # print(R) # 相机到世界的平移矩阵 也就是相机在世界坐标系下的位置 t_c2w=np.array([x, y, z]) scale_c2w=1 view = Camera_view(img_id=i, R=R_c2w, t=t_c2w, scale=scale_c2w, FoVx=Fovx, FoVy=Fovy, image_width=width, image_height=height) #df = pd.DataFrame() img_opencv = render_img( view, gaussians, pipeline, background) # python ./render.py -m /home/dongdong/2project/0data/NWPU/gs_out/train1_out_sh1_num7000 --iteration 7010 if __name__ == "__main__": # Set up command line argument parser parser = ArgumentParser(description="渲染测试脚本") model = ModelParams(parser, sentinel=True) pipeline = PipelineParams(parser) parser.add_argument("--iteration", default=30000, type=int) parser.add_argument("--models", default='baseline',type=str) #'baseline','quantised' 'quantised_half' parser.add_argument("--quiet", action="store_true") #标记以省略写入标准输出管道的任何文本。 args = get_combined_args(parser) # 从cfg_args加载路径 safe_state(args.quiet) render_sets_handMode(model.extract(args), args.iteration, pipeline.extract(args))