https://github.com/Enzo-MiMan/cv_related_collections/blob/main/deep_learning_basic/self-attention/self_attention.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | import torch.nn as nn import torch import matplotlib.pyplot as plt class Self_Attention(nn.Module): def __init__( self , dim, dk, dv): super (Self_Attention, self ).__init__() self .scale = dk * * - 0.5 self .q = nn.Linear(dim, dk) self .k = nn.Linear(dim, dk) self .v = nn.Linear(dim, dv) def forward( self , x): q = self .q(x) k = self .k(x) v = self .v(x) attn = (q @ k.transpose( - 2 , - 1 )) * self .scale attn = attn.softmax(dim = - 1 ) x = attn @ v return x att = Self_Attention(dim = 2 , dk = 2 , dv = 3 ) x = torch.rand(( 1 , 4 , 2 )) output = att(x) # class MultiHead_Attention(nn.Module): # def __init__(self, dim, num_heads): # # super(MultiHead_Attention, self).__init__() # self.num_heads = num_heads # 2 # head_dim = dim // num_heads # 2 # self.scale = head_dim ** -0.5 # 1 # self.qkv = nn.Linear(dim, dim * 3) # self.proj = nn.Linear(dim, dim) # # def forward(self, x): # B, N, C = x.shape # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # # q, k, v = qkv[0], qkv[1], qkv[2] # # attn = (q @ k.transpose(-2, -1)) * self.scale # attn = attn.softmax(dim=-1) # # x = (attn @ v).transpose(1, 2).reshape(B, N, C) # x = self.proj(x) # x = self.proj_drop(x) # return x # # att = MultiHead_Attention(dim=768, num_heads=12) # x = torch.rand((1, 197, 768)) # output = att(x) |
https://zh.d2l.ai/chapter_attention-mechanisms/nadaraya-waston.html
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | from d2l import torch as d2l import torch from torch import nn #@save def show_heatmaps(matrices, xlabel, ylabel, titles = None , figsize = ( 2.5 , 2.5 ), cmap = 'Reds' ): """显示矩阵热图""" d2l.use_svg_display() num_rows, num_cols = matrices.shape[ 0 ], matrices.shape[ 1 ] fig, axes = d2l.plt.subplots(num_rows, num_cols, figsize = figsize, sharex = True , sharey = True , squeeze = False ) for i, (row_axes, row_matrices) in enumerate ( zip (axes, matrices)): for j, (ax, matrix) in enumerate ( zip (row_axes, row_matrices)): pcm = ax.imshow(matrix.detach().numpy(), cmap = cmap) if i = = num_rows - 1 : ax.set_xlabel(xlabel) if j = = 0 : ax.set_ylabel(ylabel) if titles: ax.set_title(titles[j]) fig.colorbar(pcm, ax = axes, shrink = 0.6 ) d2l.plt.show() # attention_weights = torch.eye(10).reshape((1, 1, 10, 10)) # show_heatmaps(attention_weights, xlabel='Keys', ylabel='Queries') #====================1 训练数据 ==================== n_train = 50 # 训练样本数 x_source = torch.rand(n_train) * 5 # 原始数据 #包含了从区间[0, 1)的均匀分布中抽取的一组随机数。张量的形状由参数sizes定义。 0-1 50个数 0.1-4.9 x_train, _ = torch.sort(x_source) # 排序后的训练样本 print ( 'x_train' ,x_train) def f(x): return 2 * torch.sin(x) + x * * 0.8 y_train = f(x_train) + torch.normal( 0.0 , 0.5 , (n_train,)) # 训练样本的输出 #====================2 测试数据 ==================== x_test = torch.arange( 0 , 5 , 0.1 ) # 测试样本 0-5 0.1 50个数据 y_truth = f(x_test) # 测试样本的真实输出 # n_test = len(x_test) # 测试样本数 # n_test #3 下面的函数将绘制所有的训练样本(样本由圆圈表示), 不带噪声项的真实数据生成函数 #(标记为“Truth”), 以及学习得到的预测函数(标记为“Pred”)。 def plot_kernel_reg(y_hat): d2l.plot(x_test, [y_truth, y_hat], 'x' , 'y' , legend = [ 'Truth' , 'Pred' ], xlim = [ 0 , 5 ], ylim = [ - 1 , 5 ]) d2l.plt.plot(x_train, y_train, 'o' , alpha = 0.5 ) d2l.plt.show() #=======================4-1 平均汇聚 # 前面跳过了训练过程, 直接显示的给了计算代替网络预测,直接最后一步平均汇聚层 run = 0 if run: y_out = y_train.mean() # y 的输出 最后一层平均汇聚层 y_hat = torch.repeat_interleave(y_out, n_train) # 1*n_train列输出 每一个yi 求平均后,都是均值 ,在回复维度[] #print('y_hat',y_hat) # 传入多维张量,默认`展平` # >>> y = torch.tensor([[1, 2], [3, 4]]) # >>> torch.repeat_interleave(y, 2) # tensor([1, 1, 2, 2, 3, 3, 4, 4]) # 横坐标x_test, [真值y_truth, 平均汇聚层预测y_hat], plot_kernel_reg(y_hat) #====================4-2 非参数注意力汇聚========================== run = 0 if run: # 根据输入的位置对输出yi进行加权: # X_repeat的形状:(n_test,n_train), # 每一行都包含着相同的测试输入(例如:同样的查询) print ( 'x_test' ,x_test.shape,x_test) # torch.Size([50]) ''' x_test torch.Size([50]) tensor([0.0000, 0.1000, 0.2000, 0.3000, 0.4000, 0.5000, 0.6000, 0.7000, 0.8000, 0.9000, 1.0000, 1.1000, 1.2000, 1.3000, 1.4000, 1.5000, 1.6000, 1.7000, 1.8000, 1.9000, 2.0000, 2.1000, 2.2000, 2.3000, 2.4000, 2.5000, 2.6000, 2.7000, 2.8000, 2.9000, 3.0000, 3.1000, 3.2000, 3.3000, 3.4000, 3.5000, 3.6000, 3.7000, 3.8000, 3.9000, 4.0000, 4.1000, 4.2000, 4.3000, 4.4000, 4.5000, 4.6000, 4.7000, 4.8000, 4.9000]) ''' #print('x_test.repeat_interleave(n_train)',x_test.repeat_interleave(n_train).shape,x_test.repeat_interleave(n_train)) # torch.Size([2500]) # 构造查询表 X_repeat = x_test.repeat_interleave(n_train).reshape(( - 1 , n_train)) print ( 'X_repeat' ,X_repeat.shape,X_repeat) # torch.Size([50, 50]) ''' X_repeat torch.Size([50, 50]) tensor([[0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000], [0.1000, 0.1000, 0.1000, ..., 0.1000, 0.1000, 0.1000], [0.2000, 0.2000, 0.2000, ..., 0.2000, 0.2000, 0.2000], ..., [4.7000, 4.7000, 4.7000, ..., 4.7000, 4.7000, 4.7000], [4.8000, 4.8000, 4.8000, ..., 4.8000, 4.8000, 4.8000], [4.9000, 4.9000, 4.9000, ..., 4.9000, 4.9000, 4.9000]]) x_train torch.Size([1, 50]) tensor([0.1249, 0.2723, 0.3242, 0.3747, 0.6435, 0.7526, 0.7749, 0.9694, 0.9709, 1.1660, 1.3965, 1.4592, 1.5059, 1.6240, 1.6567, 1.9198, 1.9289, 1.9650, 1.9665, 2.0000, 2.0822, 2.1460, 2.2586, 2.2702, 2.3153, 2.4764, 2.6111, 2.6732, 2.9376, 3.1270, 3.2933, 3.3839, 3.3909, 3.4030, 3.4695, 3.6524, 3.6915, 3.7456, 3.8196, 3.8434, 3.8556, 3.9236, 4.2003, 4.2841, 4.2882, 4.5061, 4.5877, 4.6141, 4.7991, 4.8649]) ''' # x_train包含着键。attention_weights的形状:(n_test,n_train), # 每一行都包含着要在给定的每个查询的值(y_train)之间分配的注意力权重 # x_train [0,0.1] print ((X_repeat - x_train).shape) #torch.Size([50, 50]) # X_repeat 查询表 # x_train 原始数据 # 位置权重 attention_weights = nn.functional.softmax( - (X_repeat - x_train) * * 2 / 2 , dim = 1 ) # # 键 y_hat的每个元素都是值的加权平均值,其中的权重是注意力权重 y_hat = torch.matmul(attention_weights, y_train) plot_kernel_reg(y_hat) print ( 'y_hat' ,y_hat.shape,y_hat) #y_hat torch.Size([50]) show_heatmaps(attention_weights.unsqueeze( 0 ).unsqueeze( 0 ), xlabel = 'Sorted training inputs' , ylabel = 'Sorted testing inputs' ) #====================4-3 带参数注意力汇聚========================== i = 0 class NWKernelRegression(nn.Module): def __init__( self , * * kwargs): super ().__init__( * * kwargs) self .w = nn.Parameter(torch.rand(( 1 ,), requires_grad = True )) ''' queries=x_train 样本数目*1*50 keys 50*50-1 values 50*50-1 ''' def forward( self , queries, keys, values): if i = = 0 : pass #i=i+1 #print('原始 queries.shape',queries.shape,queries) #print('keys.shape',keys.shape,keys) # 50*49 else : pass # 50*50 # queries和attention_weights的形状为(查询个数,“键-值”对个数) ''' 原数据 queries [1,50] 变换后 queries [50,50] ''' queries = queries.repeat_interleave(keys.shape[ 1 ]).reshape(( - 1 , keys.shape[ 1 ])) #print('变换 queries.shape',queries.shape,queries) ''' 变换 queries.shape torch.Size([50, 50]) tensor([[0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000], [0.1000, 0.1000, 0.1000, ..., 0.1000, 0.1000, 0.1000], [0.2000, 0.2000, 0.2000, ..., 0.2000, 0.2000, 0.2000], ..., [4.7000, 4.7000, 4.7000, ..., 4.7000, 4.7000, 4.7000], [4.8000, 4.8000, 4.8000, ..., 4.8000, 4.8000, 4.8000], [4.9000, 4.9000, 4.9000, ..., 4.9000, 4.9000, 4.9000]]) keys.shape torch.Size([50, 50]) tensor([[0.0456, 0.1142, 0.2446, ..., 4.7166, 4.8794, 4.9157], [0.0456, 0.1142, 0.2446, ..., 4.7166, 4.8794, 4.9157], [0.0456, 0.1142, 0.2446, ..., 4.7166, 4.8794, 4.9157], ..., [0.0456, 0.1142, 0.2446, ..., 4.7166, 4.8794, 4.9157], [0.0456, 0.1142, 0.2446, ..., 4.7166, 4.8794, 4.9157], [0.0456, 0.1142, 0.2446, ..., 4.7166, 4.8794, 4.9157]]) ''' self .attention_weights = nn.functional.softmax( - ((queries - keys) * self .w) * * 2 / 2 , dim = 1 ) #print("self.attention_weights ",self.attention_weights.shape,self.attention_weights) ''' self.attention_weights torch.Size([50, 50]) tensor([[4.1580e-01, 3.9295e-01, 1.5210e-01, ..., 0.0000e+00, 0.0000e+00, 0.0000e+00], [1.3102e-01, 1.7392e-01, 3.4801e-01, ..., 0.0000e+00, 0.0000e+00, 0.0000e+00], [4.8966e-03, 9.1298e-03, 9.4441e-02, ..., 0.0000e+00, 0.0000e+00, 0.0000e+00], ..., [0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 3.3589e-01, 1.2297e-01, 3.2375e-05], [0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 4.2061e-01, 4.8211e-01, 8.1415e-03], [0.0000e+00, 0.0000e+00, 0.0000e+00, ..., 1.1759e-01, 4.2199e-01, 4.5708e-01]], grad_fn=<SoftmaxBackward>) ''' # values的形状为(查询个数,“键-值”对个数) ''' 计算两个tensor的矩阵乘法,torch.bmm(a,b), tensor a 的size为(b,h,w), tensor b的size为(b,w,m) 也就是说两个tensor的第一维是相等的,然后第一个数组的第三维和第二个数组的第二维度要求一样,对于剩下的则不做要求,输出维度 (b,h,m) values [50,50] ''' #squeeze(a)就是将a中所有为1的维度删掉。 y_all = torch.bmm( self .attention_weights.unsqueeze( 1 ),values.unsqueeze( - 1 )).reshape( - 1 ) print ( "y 预测" ,y_all.shape,y_all) ''' y_all torch.Size([50]) y_all tensor([0.7118, 0.7288, 0.7530, 0.7947, 0.8750, 1.0298, 1.2897, 1.6270, 1.9577, 2.2429, 2.4977, 2.7139, 2.8639, 2.9507, 3.0031, 3.0505, 3.1153, 3.2099, 3.3269, 3.4348, 3.4992, 3.5058, 3.4644, 3.3975, 3.3216, 3.2334, 3.1148, 预测结果最大 2.9579, 2.7886, 2.6518, 2.5684, 2.5253, 2.4968, 2.4572, 2.3833, 2.2582, 2.0832, 1.8848, 1.6988, 1.5471, 1.4331, 1.3567, 1.3277, 1.3641, 1.4558, 1.5410, 1.5699, 1.5445, 1.4873, 1.4159], grad_fn=<ViewBackward>) ''' return y_all # 1 数据初始化 # X_tile的形状:(n_train,n_train),每一行都包含着相同的训练输入 X_tile = x_train.repeat((n_train, 1 )) print ( 'X_tile' ,X_tile.shape,X_tile) ''' X_tile torch.Size([50, 50]) tensor([[0.0618, 0.0979, 0.2568, ..., 4.8935, 4.9268, 4.9565], [0.0618, 0.0979, 0.2568, ..., 4.8935, 4.9268, 4.9565], [0.0618, 0.0979, 0.2568, ..., 4.8935, 4.9268, 4.9565], ..., [0.0618, 0.0979, 0.2568, ..., 4.8935, 4.9268, 4.9565], [0.0618, 0.0979, 0.2568, ..., 4.8935, 4.9268, 4.9565], [0.0618, 0.0979, 0.2568, ..., 4.8935, 4.9268, 4.9565]]) ''' # Y_tile的形状:(n_train,n_train),每一行都包含着相同的训练输出 Y_tile = y_train.repeat((n_train, 1 )) ''' torch.eye(3) tensor([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) ''' x_f = ( 1 - torch.eye(n_train)). type (torch. bool ) ''' x_f torch.Size([50, 50]) tensor([[False, True, True, ..., True, True, True], [ True, False, True, ..., True, True, True], [ True, True, False, ..., True, True, True], ..., [ True, True, True, ..., False, True, True], [ True, True, True, ..., True, False, True], [ True, True, True, ..., True, True, False]]) ''' print ( 'x_f' ,x_f.shape,x_f) # keys的形状:('n_train','n_train'-1) 返回一个二维张量,对角线上为 1,其他位置为 0。# #任何一个训练样本的输入都会和除自己以外的所有训练样本的“键-值”对进行计算, 从而得到其对应的预测输出。 keys = X_tile[x_f].reshape((n_train, - 1 )) print ( 'keys' ,keys.shape,keys) ''' X_tile torch.Size([50, 50]) tensor([[0.0618, 0.0979, 0.2568, ..., 4.8935, 4.9268, 4.9565], [0.0618, 0.0979, 0.2568, ..., 4.8935, 4.9268, 4.9565], [0.0618, 0.0979, 0.2568, ..., 4.8935, 4.9268, 4.9565], ..., [0.0618, 0.0979, 0.2568, ..., 4.8935, 4.9268, 4.9565], [0.0618, 0.0979, 0.2568, ..., 4.8935, 4.9268, 4.9565], [0.0618, 0.0979, 0.2568, ..., 4.8935, 4.9268, 4.9565]]) ''' #任何一个训练样本的输入都会和除自己以外的所有训练样本的“键-值”对进行计算, 从而得到其对应的预测输出。 ''' torch.Size([50, 49]) tensor([[0.0979, 0.2568, 0.2891, ..., 4.8935, 4.9268, 4.9565], [0.0618, 0.2568, 0.2891, ..., 4.8935, 4.9268, 4.9565], [0.0618, 0.0979, 0.2891, ..., 4.8935, 4.9268, 4.9565], ..., [0.0618, 0.0979, 0.2568, ..., 4.7557, 4.9268, 4.9565], [0.0618, 0.0979, 0.2568, ..., 4.7557, 4.8935, 4.9565], [0.0618, 0.0979, 0.2568, ..., 4.7557, 4.8935, 4.9268]]) ''' # values的形状:('n_train','n_train'-1) values = Y_tile[( 1 - torch.eye(n_train)). type (torch. bool )].reshape((n_train, - 1 )) print ( 'values' ,values.shape,values) # 2 创建模型 net = NWKernelRegression() # 3 创建损失 loss = nn.MSELoss(reduction = 'none' ) # 4 更新迭代器 trainer = torch.optim.SGD(net.parameters(), lr = 0.5 ) # 画图 animator = d2l.Animator(xlabel = 'epoch' , ylabel = 'loss' , xlim = [ 1 , 5 ]) for epoch in range ( 5 ): trainer.zero_grad() ''' x_train 样本数目*1*50 keys 50*50-1 values 50*50-1 ''' y_predict = net(x_train, keys, values) l = loss(y_predict, y_train) l. sum ().backward() trainer.step() print (f 'epoch {epoch + 1}, loss {float(l.sum()):.6f}' ) animator.add(epoch + 1 , float (l. sum ())) ##########+=======================测试============= #0-1 测试真值x x_test = torch.arange( 0 , 5 , 0.1 ) # 测试样本 0-5 0.1 50个数据 ''' x_test 1*50 [0.1,0.2,0.3...4.9,5.0] ''' #0-2 测试真值y y_truth = f(x_test) # 测试样本的真实输出 # 1 使用训练数据 构建 查询键和值 n_test = n_train # keys的形状:(n_test,n_train),每一行包含着相同的训练输入(例如,相同的键) print ( 'x_train' ,x_train.shape,x_train) ''' x_train torch.Size([50]) tensor([0.1321, 0.4468, 0.4907, 0.5023, 0.5911, 0.6308, 0.7619, 0.9824, 0.9841, 1.1427, 1.1590, 1.2575, 1.2678, 1.2939, 1.8171, 1.9704, 1.9845, 2.0308, 2.1194, 2.1260, 2.4450, 2.4946, 2.5947, 2.6076, 2.8287, 2.8463, 3.0713, 3.0994, 3.1098, 3.3187, 3.5441, 3.5758, 3.6766, 3.7267, 3.8284, 4.0710, 4.0790, 4.1060, 4.1062, 4.2637, 4.3664, 4.4939, 4.5054, 4.6789, 4.7355, 4.7434, 4.8369, 4.9438, 4.9527, 4.9534]) ''' # 1-2 训练数据构建 键 keys = x_train.repeat((n_test, 1 )) # h行数不动 列扩展 50个数据 列 拷贝50列 print ( '给定的查询 keys' ,keys.shape,keys) ''' x_train 1X50 [x1,x2,..,x50] keys 50X50[ [x1,x2,...x50] [x1,x2,...x50] ... 50个 [x1,x2,...x50] ] tensor([[0.1321, 0.4468, 0.4907, ..., 4.9438, 4.9527, 4.9534], [0.1321, 0.4468, 0.4907, ..., 4.9438, 4.9527, 4.9534], [0.1321, 0.4468, 0.4907, ..., 4.9438, 4.9527, 4.9534], ..., [0.1321, 0.4468, 0.4907, ..., 4.9438, 4.9527, 4.9534], [0.1321, 0.4468, 0.4907, ..., 4.9438, 4.9527, 4.9534], [0.1321, 0.4468, 0.4907, ..., 4.9438, 4.9527, 4.9534]]) ''' # 1-3 训练数据构建 值 # value的形状:(n_test,n_train) values = y_train.repeat((n_test, 1 )) print ( '给定的查询 values' ,values.shape,values) ''' values[ [y1,y2,...,y50] [y1,y2,...,y50] ...50个 [y1,y2,...,y50] ] values torch.Size([50, 50]) tensor([[1.2841, 0.6112, 0.5891, ..., 1.5115, 1.7727, 1.9353], [1.2841, 0.6112, 0.5891, ..., 1.5115, 1.7727, 1.9353], [1.2841, 0.6112, 0.5891, ..., 1.5115, 1.7727, 1.9353], ..., [1.2841, 0.6112, 0.5891, ..., 1.5115, 1.7727, 1.9353], [1.2841, 0.6112, 0.5891, ..., 1.5115, 1.7727, 1.9353], [1.2841, 0.6112, 0.5891, ..., 1.5115, 1.7727, 1.9353]]) ''' y_t = net(x_test, keys, values) print ( 'y_t' ,y_t.shape,y_t) ''' y_t torch.Size([50]) tensor([0.4223, 0.4960,...,1.6023]) y_hat torch.Size([50, 1]) tensor([[0.4223],[0.4960],...,[1.6023]]) ''' y_hat = y_t.unsqueeze( 1 ).detach() print ( 'y_hat' ,y_hat.shape,y_hat) plot_kernel_reg(y_hat) #show_heatmaps(net.attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs') |
分类:
1_4pytorch
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
2022-10-17 1 增量式PID
2021-10-17 zigbee无线串口
2019-10-17 使用HTML5开发Kinect体感游戏
2019-10-17 cocos2dx+KinectV2 体感游戏之微信打飞机
2019-10-17 Kinect v2控制鼠标原理分析和源码
2019-10-17 一代控制图片放大缩小移动的逻辑
2019-10-17 Kinect一代学习(一):开发环境搭建