tf.keras实现线性回归和多层感知器

线性回归实现

转自:https://www.cnblogs.com/miraclepbc/p/14287756.html

相关库引用

import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

加载数据

data = pd.read_csv("E:/datasets/dataset/Income1.csv") # 获取数据
x = data.Education
y = data.Income
data

输出散点图,看看数据的分布情况

plt.scatter(data.Education, data.Income) # 打印散点图

定义模型

model = tf.keras.Sequential() # 建立一个层叠模型
model.add(tf.keras.layers.Dense(1, input_shape = (1, ))) # 添加一个层,1个单元,输入大小用元组
model.summary() # 查看模型的参数信息


这里总共有2个参数,即 y=ax+b𝑦=𝑎𝑥+𝑏的a𝑎和b𝑏
tf.keras.layers.Dense()参数列表中还有激活函数,这个后面介绍

模型编译 

model.compile(
    optimizer = 'adam', # adam优化器
    loss = 'mse'        # 均方根误差
)

训练模型

history = model.fit(x, y, epochs = 10000) # 训练10000次

预测

model.predict(pd.Series([20]))

多层感知器实现

加载数据

data = pd.read_csv("E:/datasets/dataset/Advertising.csv") # 获取数据
x = data.iloc[:, 1:-1]
y = data.iloc[:, -1]
data

输出散点图,看看数据的分布情况

plt.scatter(data.TV, data.sales) # 打印散点图

定义模型

model = tf.keras.Sequential() # 建立一个层叠模型
model.add(tf.keras.layers.Dense(10, input_shape = (3, ), activation = 'relu')) # 添加一个层,10个节点
model.add(tf.keras.layers.Dense(1))
model.summary()


这里总共有51个参数,即:
第一层:y=a1x1+a2x2+a3x3+b𝑦=𝑎1∗𝑥1+𝑎2∗𝑥2+𝑎3∗𝑥3+𝑏的a1,a2,a3𝑎1,𝑎2,𝑎3和b𝑏,总共10个节点,因此有40个参数
第二层:y=10i=1wixi+b𝑦=∑𝑖=110𝑤𝑖∗𝑥𝑖+𝑏的wi𝑤𝑖和b𝑏,总共有11个参数

模型编译

model.compile(
    optimizer = 'adam', # adam优化器
    loss = 'mse'        # 均方根误差
)

训练模型

history = model.fit(x, y, epochs = 1000) # 训练1000次

预测

test = data.iloc[:10, 1:-1]
model.predict(test)

 

posted @   有何m不可  阅读(6)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示