03 2022 档案
摘要:对比学习的核心就是loss的编写,记录下loss的tensorflow实现 def unsupervise_loss(y_pred, alpha=0.05): idxs = tf.range(y_pred.shape[0]) y_true = idxs + 1 - idxs % 2 * 2 y_pr
阅读全文
摘要:本文简述对抗训练在图像的的实践方法,关于对抗训练的理论和NLP应用请参阅参考文献【1】。 可以采用两种方法: 在原始样本训练模型,在对抗样本微调 混合正常样本和对抗样本一起训练 完成模型训练后,构造对抗样本 from tensorflow.keras.losses import MSE import
阅读全文
摘要:技术架构 整体可以分为 检索召回、排序 搜索相关的策略大体分为如下: query 理解->分词,纠错,意图识别,term weight 等 召回-> bool检索,倒排索引, bm25, tf-idf, 语义相似度 等 排序-> learning to ranking,深度模型 等 尽快划分为不同阶
阅读全文
摘要:针对前文所述 机器学习模型部署摘要 中docker+fastapi部署机器学习的一个完整示例 outline fastapi简单示例 基于文件内容检测的机器学习&fastapi 在docker容器部署 Install pip install fastapi pip install "uvicorn[
阅读全文
摘要:1、如果是实时的、小数据量的预测应用,则采用的SOA调用Rserve或者python-httpserve来进行应用;这种应用方式有个缺点是需要启用服务来进行预测,也就是需要跨环境,从Java跨到R或者Python环境。对于性能,基本上我们用Rserver方式,针对一次1000条或者更少请求的预测,可
阅读全文