malware detection and machine learning(EMBER)

EMBER

https://github.com/elastic/ember\
paper:  https://arxiv.org/abs/1804.04637

特征

9个特征组,可以分为两大部分

文件结构无关特征

  • 字节直方图

  • 字节熵直方图

  • 可打印字符串统计

    {'numstrings': 3967,
     'avlength': 16.07159062263675,
     'printabledist': [3729,65,……],
     'printables': 63756,
     'entropy': 5.877838134765625,
     'paths': 4,
     'urls': 26,
     'registry': 0,
     'MZ': 11}
    

文件结构相关特征

  • general
  • file header
  • sections
  • imports
  • exports
  • datadirections

分别如下:

  • general

    # 直接使用数值作为特征数值
    {'size': 1237896,
     'vsize': 1241088,
     'has_debug': 1,
     'exports': 0,
     'imports': 314,
     'has_relocations': 1,
     'has_resources': 1,
     'has_signature': 1,
     'has_tls': 1,
     'symbols': 0}
    
  • file header

    • coff header
    • option header
    # 数值保持原始;文本进行hash
    {'coff': {'timestamp': 1639042586,
      'machine': 'I386',
      'characteristics': ['CHARA_32BIT_MACHINE', 'EXECUTABLE_IMAGE']},
     'optional': {'subsystem': 'WINDOWS_GUI',
      'dll_characteristics': ['DYNAMIC_BASE',
       'NX_COMPAT',
       'TERMINAL_SERVER_AWARE'],
      'magic': 'PE32',
      'major_image_version': 0,
      'minor_image_version': 0,
      'major_linker_version': 14,
      'minor_linker_version': 29,
      'major_operating_system_version': 6,
      'minor_operating_system_version': 0,
      'major_subsystem_version': 6,
      'minor_subsystem_version': 0,
      'sizeof_code': 368640,
      'sizeof_headers': 1024,
      'sizeof_heap_commit': 4096}}
    
  • sections

    # 数值+hash 
    {'entry': '.text',
     'sections': [{'name': '.text',
       'size': 368640,
       'entropy': 6.463957857941052,
       'vsize': 368140,
       'props': ['CNT_CODE', 'MEM_EXECUTE', 'MEM_READ']},
      {'name': '.rdata',
       'size': 104960,
       'entropy': 4.837026560868303,
       'vsize': 104760,
       'props': ['CNT_INITIALIZED_DATA', 'MEM_READ']},
      {'name': '.data',
       'size': 28672,
       'entropy': 0.6108592144000272,
       'vsize': 32760,
       'props': ['CNT_INITIALIZED_DATA', 'MEM_READ', 'MEM_WRITE']},
      {'name': '.rsrc',
       'size': 703488,
       'entropy': 5.868256562445707,
       'vsize': 703408,
       'props': ['CNT_INITIALIZED_DATA', 'MEM_READ']},
      {'name': '.reloc',
       'size': 22016,
       'entropy': 6.754089624508025,
       'vsize': 21584,
       'props': ['CNT_INITIALIZED_DATA', 'MEM_DISCARDABLE', 'MEM_READ']}]}
    
  • imports

    # dll+导入函数名: hash
    {'NETAPI32.dll': ['NetUserGetGroups', 'NetUserGetLocalGroups'],
     'RPCRT4.dll': ['UuidFromStringW'],
     'VERSION.dll': ['GetFileVersionInfoW',
      'GetFileVersionInfoSizeW',
      'VerQueryValueW'],
     'KERNEL32.dll': ['FindFirstFileExW',
      'FindClose',
      'GetConsoleOutputCP',
      'SetFilePointerEx',
      'GetFileSizeEx',
      'ReadConsoleW',
      'ReadConsoleInputW',
      'SetConsoleMode',
      ……}
    
  • exports

    # 导出函数: hash
    
  • datadirectories

    # 直接使用 size 和 virtual_address 数值作为特征数值
    [{'name': 'EXPORT_TABLE', 'size': 0, 'virtual_address': 0},
     {'name': 'IMPORT_TABLE', 'size': 300, 'virtual_address': 470148},
     {'name': 'RESOURCE_TABLE', 'size': 703408, 'virtual_address': 512000},
     {'name': 'EXCEPTION_TABLE', 'size': 0, 'virtual_address': 0},
     {'name': 'CERTIFICATE_TABLE', 'size': 9096, 'virtual_address': 1228800},
     {'name': 'BASE_RELOCATION_TABLE', 'size': 21584, 'virtual_address': 1216512},
     {'name': 'DEBUG', 'size': 112, 'virtual_address': 452584},
     {'name': 'ARCHITECTURE', 'size': 0, 'virtual_address': 0},
     {'name': 'GLOBAL_PTR', 'size': 0, 'virtual_address': 0},
     {'name': 'TLS_TABLE', 'size': 24, 'virtual_address': 452928},
     {'name': 'LOAD_CONFIG_TABLE', 'size': 64, 'virtual_address': 452696},
     {'name': 'BOUND_IMPORT', 'size': 0, 'virtual_address': 0},
     {'name': 'IAT', 'size': 1368, 'virtual_address': 372736},
     {'name': 'DELAY_IMPORT_DESCRIPTOR', 'size': 0, 'virtual_address': 0},
     {'name': 'CLR_RUNTIME_HEADER', 'size': 0, 'virtual_address': 0}]
    

模型

lightgbm

        params = {
            "boosting": "gbdt",
            "objective": "binary",
            "num_iterations": 1000,
            "learning_rate": 0.05,
            "num_leaves": 2048,
            "max_depth": 15,
            "min_data_in_leaf": 50,
            "feature_fraction": 0.5
        }

malconv

        maxlen = 2**20 # 1MB
        embedding_size = 8 

        # define model structure
        inp = Input( shape=(maxlen,))
        emb = Embedding( input_dim, embedding_size )( inp )
        filt = Conv1D( filters=128, kernel_size=500, strides=500, use_bias=True, activation='relu', padding='valid' )(emb)
        attn = Conv1D( filters=128, kernel_size=500, strides=500, use_bias=True, activation='sigmoid', padding='valid')(emb)
        gated = Multiply()([filt,attn])
        feat = GlobalMaxPooling1D()( gated )
        dense = Dense(128, activation='relu')(feat)
        outp = Dense(1, activation='sigmoid')(dense)

        basemodel = Model( inp, outp )
posted @ 2022-05-29 17:24  鱼与鱼  阅读(103)  评论(0编辑  收藏  举报