对抗训练简述&应用
本文简述对抗训练在图像的的实践方法,关于对抗训练的理论和NLP应用请参阅参考文献【1】。
可以采用两种方法:
- 在原始样本训练模型,在对抗样本微调
- 混合正常样本和对抗样本一起训练
完成模型训练后,构造对抗样本
from tensorflow.keras.losses import MSE
import tensorflow as tf
def generate_image_adversary(model, image, label, eps=2 / 255.0):
# cast the image
image = tf.cast(image, tf.float32)
# record our gradients
with tf.GradientTape() as tape:
# explicitly indicate that our image should be tacked for
# gradient updates
tape.watch(image)
# use our model to make predictions on the input image and
# then compute the loss
pred = model(image)
loss = tf.keras.losses.MSE(label, pred)
# calculate the gradients of loss with respect to the image, then
# compute the sign of the gradient
gradient = tape.gradient(loss, image)
signedGrad = tf.sign(gradient)
# construct the image adversary
adversary = (image + (signedGrad * eps)).numpy()
# return the image adversary to the calling function
return adversary
def generate_adversarial_batch(model, dataset, eps=0.01):
while True:
for images, labels in dataset:
adversary = generate_image_adversary(model,images, labels, eps=eps)
yield adversary,labels
混合样本,一起训练
同上述方法,只要在构造批样本中混合正常和对抗样本即可
train
adv_ds = generate_adversarial_batch(model, train_ds, eps=0.1)
@tf.function
def train_loop(features, labels, training=False):
# Define the GradientTape context
with tf.GradientTape() as tape:
# Get the probabilities
predictions = model(features, training)
#labels = tf.dtypes.cast(labels, tf.float32)
# Calculate the loss
loss = loss_func(labels, predictions)
# Get the gradients
gradients = tape.gradient(loss, model.trainable_variables)
# Update the weights
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss, predictions
loss_func = tf.keras.losses.BinaryCrossentropy()
accuracy = tf.keras.metrics.BinaryAccuracy()
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
epoch_loss_avg = tf.keras.metrics.Mean()
for step, (x, y) in enumerate(adv_ds):
#print("Input: {}".format(x))
loss, y_ = train_loop(x, y, True)
# Track progress
epoch_loss_avg(loss)
accuracy(y, y_)
if step % 100 == 0:
print("Iteration step: {}; Loss: {:.3f}, Accuracy: {:.3%}".format(step,
epoch_loss_avg.result(),
accuracy.result()))
[2] Tensorflow. Adversarial example using FGSM. https://www.tensorflow.org/tutorials/generative/adversarial_fgsm
[3] Defending against adversarial image attacks with Keras and TensorFlow. https://pyimagesearch.com/2021/03/08/defending-against-adversarial-image-attacks-with-keras-and-tensorflow/
[4] Mixing normal images and adversarial images when training CNNs. https://pyimagesearch.com/2021/03/15/mixing-normal-images-and-adversarial-images-when-training-cnns/
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步