Processing math: 100%

SVM之不一样的视角

上一篇学习SVM中 从最大间隔角度出发,详细学习了如何用拉格朗日乘数法求解约束问题,一步步构建SVM的目标函数,这次尝试从另一个角度学习SVM。

回顾监督学习要素

  • 数据:(xi,yi

  • 模型 ^yi=f(xi)

  • 目标函数(损失函数+正则项) l(yi,ˆyi)

  • 用优化算法求解

SVM之Hinge Loss

  • 模型

    svm要寻找一个最优分离超平面,将正样本和负样本划分到超平面两侧

f(x)=wx+b

  • 目标函数

    minw,bNi=1max(0,1yi(wxi+b))+λ||w||2

    损失函数+正则化

  • 优化算法

    梯度下降(求导时需要分段求导,见[1])

为什么是Hinge Loss

  • 保持了支持向量机解的稀疏性

上图横轴 yf(x)>0 表示预测和真实标签一样,纵轴表示损失。可以看处Hinge Loss 和其他loss的区别在于,当 yif(xi)1 时,损失函数值为 0,意味着对应的样本点对loss没有贡献,就没有参与权重参数的更新,也就是说不参与最终超平面的决定,这才是支持向量机最大的优势所在,对训练样本数目的依赖大大减少,而且提高了训练效率。

[1] https://blog.csdn.net/oldmao_2001/article/details/95719629

[2] https://www.cnblogs.com/guoyaohua/p/9436237.html

[3] https://blog.csdn.net/qq_32742009/article/details/81432640

[4] https://www.zhihu.com/question/47746939

posted @   鱼与鱼  阅读(169)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架
点击右上角即可分享
微信分享提示