对康托展开的一些心得...

康托展开: 对于全排列中形成的一个数组,可以知道他是排列中的第几种...具体公式为:

X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,a为整数数组,并且0<=ai<i(1<=i<=n)。这就是康托展开。

一下是一些转载....

     比如{1,2,3,4,...,n}表示1,2,3,...,n的排列如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。
代表的数字 1 2 3 4 5 6 也就是把10进制数与一个排列对应起来。
他们间的对应关系可由康托展开来找到。
如我想知道321是{1,2,3}中第几个大的数可以这样考虑 :
第一位是3,当第一位的数小于3时,那排列数小于321 如 123、 213 ,小于3的数有1、2 。所以有2*2!个。再看小于第二位2的:小于2的数只有一个就是1 ,所以有1*1!=1 所以小于321的{1,2,3}排列数有2*2!+1*1!=5个。所以321是第6个大的数。 2*2!+1*1!+0*0!就是康托展开。
再举个例子:1324是{1,2,3,4}排列数中第几个大的数:第一位是1小于1的数没有,是0个 0*3! 第二位是3小于3的数有1和2,但1已经在第一位了,所以只有一个数2 1*2! 。第三位是2小于2的数是1,但1在第一位,所以有0个数 0*1! ,所以比1324小的排列有0*3!+1*2!+0*1!=2个,1324是第三个大数。
 

 

我排第几个

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
 
描述

现在有"abcdefghijkl”12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说出这个排列在所有的排列中是第几小的?

 
输入
第一行有一个整数n(0<n<=10000);
随后有n行,每行是一个排列;
输出
输出一个整数m,占一行,m表示排列是第几位;
样例输入
3
abcdefghijkl
hgebkflacdji
gfkedhjblcia
样例输出
1
302715242
260726926
来源
[苗栋栋]原创
上传者
苗栋栋

代码:

 1 #include<iostream>
 2 #include<cstdio>
 3 using namespace std;
 4 int main()
 5 {
 6     int arr[12]={1},t,i,j,count;
 7     long long sum;
 8     for(i=1;i<12;i++)    //算出【1~12】内的阶乘
 9      arr[i]=arr[i-1]*i;
10    char str[13];
11    cin>>t;
12    while(t--)
13    {
14        scanf("%s",str);
15        sum=0;
16        for(i=0;i<12;i++)
17        {
18            count=0;
19          for(j=i+1;j<12;j++)
20          {
21              if(str[i]>str[j])
22                 count++;
23          }
24          sum+=count*arr[11-i];
25        }
26        cout<<sum+1<<endl;
27    }
28    return 0;
29 }
View Code

 

posted @ 2013-07-19 12:14  龚细军  阅读(585)  评论(0编辑  收藏  举报