具体数学-第13课(组合数各种性质)

原文链接:

具体数学-第13课 - WeiYang Blog
首先庆祝我自己顺利毕业了,忙完了毕业论文答辩一直在浪,所以上周的具体数学没有更新,现在补更一下,大家见谅。


首先这节课讲的基本都是组合数的相关性质,而且特别多,所以我就不在这里详细证明了,如果你们对某一个性质感兴趣,可以自己证明去。

性质1

首先将组合数推广到负数域,也就是底数为负数的情况:
\left( {\begin{array}{\*{20}{c}}r\\k\end{array}} \right) = {( - 1)^k}\left( {\begin{array}{\*{20}{c}}{k - r - 1}\\k\end{array}} \right)
证明可以从下降阶乘幂的定义直接得到。

性质2

由于
\left( {\begin{array}{\*{20}{c}}{m + n}\\m\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}{m + n}\\n\end{array}} \right)
所以由性质1可得
{( - 1)^m}\left( {\begin{array}{\*{20}{c}}{ - n - 1}\\m\end{array}} \right) = {( - 1)^n}\left( {\begin{array}{\*{20}{c}}{ - m - 1}\\n\end{array}} \right)

性质3

\sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}r\\k\end{array}} \right){ {( - 1)}^k}} = {( - 1)^m}\left( {\begin{array}{\*{20}{c}}{r - 1}\\m\end{array}} \right)
这就说明了杨辉三角同一行的前面若干项交错和是可以求得的,但是它们的直接和是无法求出的。

性质4

\sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + r}\\k\end{array}} \right){x^k}{y^{m - k}} = \sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{ - r}\\k\end{array}} \right){ {( - x)}^k}{ {(x + y)}^{m - k}}} }
证明可以通过令
{S_m} = \sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + r}\\k\end{array}} \right){x^k}{y^{m - k}}} = \sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + r - 1}\\k\end{array}} \right){x^k}{y^{m - k}}} + \sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + r - 1}\\{k - 1}\end{array}} \right){x^k}{y^{m - k}}}
将左边表示成递归式的形式,同理如果右边可以表示成相同的递归式,那么左右就相等了。

性质4看起来特别复杂,那么它有什么用呢?如果令 xy 等于不同的值,那么就可以得到许多不同的恒等式。

性质5

x = - 1,y = 1 可以得到
\sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + r}\\k\end{array}} \right){ {( - 1)}^k}} = \left( {\begin{array}{\*{20}{c}}{ - r}\\m\end{array}} \right)
这其实就是性质3的特例。

性质6

x = y = 1,r = m + 1 可以得到
\sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{2m + 1}\\k\end{array}} \right)} = \sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + k}\\k\end{array}} \right){2^{m - k}}}
左边就是杨辉三角一行中左边一半的和,所以可以得到
\sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{m + k}\\k\end{array}} \right){2^{ - k}}} {\rm{ = }}{2^m}

性质7

\left( {\begin{array}{\*{20}{c}}r\\m\end{array}} \right)\left( {\begin{array}{\*{20}{c}}m\\k\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}r\\k\end{array}} \right)\left( {\begin{array}{\*{20}{c}}{r - k}\\{m - k}\end{array}} \right)
这个公式可以形象理解为,从 r 个物品中取 m 个,再从这 m 个中取 k 个的方法数等于从 r 个物品中取 k 个,再从剩下的 r-k 个中取 m-k 个的方法数。证明的话直接用定义可证。

性质8

之前介绍了二项式系数,那么可以推广到任意 m 个未知数,它的展开式为
{({x_1} + {x_2} + \cdots + {x_m})^n} = \sum\limits_{\scriptstyle0 \le {a_1},{a_2}, \cdots ,{a_m} \le n\atop\scriptstyle{a_1} + {a_2} + \cdots + {a_m} = n} {\left( {\begin{array}{\*{20}{c}}{ {a_1} + {a_2} + \cdots + {a_m}}\\{ {a_1},{a_2}, \cdots ,{a_m}}\end{array}} \right)} {x_1}^{ {a_1}}{x_2}^{ {a_2}} \cdots {x_m}^{ {a_m}}
其中
\left( {\begin{array}{\*{20}{c}}{ {a_1} + {a_2} + \cdots + {a_m}}\\{ {a_1},{a_2}, \cdots ,{a_m}}\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}{ {a_1} + {a_2} + \cdots + {a_m}}\\{ {a_2} + \cdots + {a_m}}\end{array}} \right) \cdots \left( {\begin{array}{\*{20}{c}}{ {a_{m - 1}} + {a_m}}\\{ {a_m}}\end{array}} \right)

性质9

范德蒙德卷积式:
\sum\limits_k {\left( {\begin{array}{\*{20}{c}}r\\{m + k}\end{array}} \right)} \left( {\begin{array}{\*{20}{c}}s\\{n - k}\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}{r + s}\\{m + n}\end{array}} \right)
很多公式都可以通过替换其中的一些变量推导得到:
\begin{array}{l}\sum\limits_k {\left( {\begin{array}{\*{20}{c}}l\\{m + k}\end{array}} \right)} \left( {\begin{array}{\*{20}{c}}s\\{n + k}\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}{l + s}\\{l - m + n}\end{array}} \right)\\\sum\limits_k {\left( {\begin{array}{\*{20}{c}}l\\{m + k}\end{array}} \right)} \left( {\begin{array}{\*{20}{c}}{s + k}\\n\end{array}} \right){( - 1)^k} = {( - 1)^{l + m}}\left( {\begin{array}{\*{20}{c}}{s - m}\\{n - l}\end{array}} \right)\\\sum\limits_{k \le l} {\left( {\begin{array}{\*{20}{c}}{l - k}\\m\end{array}} \right)} \left( {\begin{array}{\*{20}{c}}s\\{k - n}\end{array}} \right){( - 1)^k} = {( - 1)^{l + m}}\left( {\begin{array}{\*{20}{c}}{s - m - 1}\\{l - m - n}\end{array}} \right)\\\sum\limits_{0 \le k \le l} {\left( {\begin{array}{\*{20}{c}}{l - k}\\m\end{array}} \right)} \left( {\begin{array}{\*{20}{c}}{q + k}\\n\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}{l + q + 1}\\{m + n + 1}\end{array}} \right)\end{array}

例题1

最后详细求解一道组合题,其他的题目就不介绍了,可以去看具体数学英文版第173页。

求下面式子的闭形式解:
\sum\limits_{k = 0}^m {\left( {\begin{array}{\*{20}{c}}m\\k\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\k\end{array}} \right)} ,n \ge m \ge 0

根据性质7,可以得到
\left( {\begin{array}{\*{20}{c}}m\\k\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\k\end{array}} \right) = \left( {\begin{array}{\*{20}{c}}{n - k}\\{m - k}\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\m\end{array}} \right)
所以
\sum\limits_{k = 0}^m {\left( {\begin{array}{\*{20}{c}}m\\k\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\k\end{array}} \right)} = \sum\limits_{k = 0}^m {\left( {\begin{array}{\*{20}{c}}{n - k}\\{m - k}\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\m\end{array}} \right)}

\begin{array}{l}\sum\limits_{k \ge 0} {\left( {\begin{array}{\*{20}{c}}{n - k}\\{m - k}\end{array}} \right)} = \sum\limits_{m - k \ge 0} {\left( {\begin{array}{\*{20}{c}}{n - (m - k)}\\{m - (m - k)}\end{array}} \right)} \\ = \sum\limits_{k \le m} {\left( {\begin{array}{\*{20}{c}}{n - m + k}\\k\end{array}} \right)} \\ = \left( {\begin{array}{\*{20}{c}}{(n - m) + m + 1}\\m\end{array}} \right)\\ = \left( {\begin{array}{\*{20}{c}}{n + 1}\\m\end{array}} \right)\end{array}
所以
\sum\limits_{k = 0}^m {\left( {\begin{array}{\*{20}{c}}m\\k\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\k\end{array}} \right)} = \left( {\begin{array}{\*{20}{c}}{n + 1}\\m\end{array}} \right)/\left( {\begin{array}{\*{20}{c}}n\\m\end{array}} \right) = \frac{ {n + 1}}{ {n + 1 - m}}

posted on 2020-01-17 01:03  godweiyang  阅读(551)  评论(0编辑  收藏  举报

导航