yolo --- 对视频进行目标检测,实时可视化预测结果,保存预测视频
import os import cv2 from ultralytics import YOLO def detect_objects_in_video(best_pt_path, video_path, output_video_name): output_video_path = video_path.rsplit('.', 1)[0] + '_' + output_video_name + '.mp4' model = YOLO(best_pt_path) cap = cv2.VideoCapture(video_path) fps = cap.get(cv2.CAP_PROP_FPS) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height)) while cap.isOpened(): success, frame = cap.read() if success: results = model(frame) annotated_frame = results[0].plot() out.write(annotated_frame) cv2.imshow('YOLO Detection', annotated_frame) if cv2.waitKey(1) & 0xFF == ord('q'): # 退出循环的话按“q” break else: break cap.release() out.release() cv2.destroyAllWindows() if __name__ == "__main__": best_pt_path = r"D:\yolo11\ultralytics\runs\detect\train3\weights\best.pt" # best.pt替换成自己的 video_path = r"C:\Users\Administrator\Desktop\Counter-strike 2 2024.12.02 - 19.58.00.11.mp4" # 原视频路径 output_video_name = "out" detect_objects_in_video(best_pt_path, video_path, output_video_name) output_video_path = video_path.rsplit('.', 1)[0] + '_' + output_video_name + '.mp4' os.startfile(output_video_path)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 上周热点回顾(3.3-3.9)
· AI 智能体引爆开源社区「GitHub 热点速览」