Python自动登录PRTG各节点,截取整个网页保存为图片

 

由于PRTG的流量图不是一张纯图片,所以采用截图整个网页的方式来保存, 脚本入下,使用前先配置环境。

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#encoding = utf-8
import time, os
import datetime
from selenium import webdriver
 
def reportdate():
    monday,friday = datetime.date.today(),datetime.date.today()
    one_day = datetime.timedelta(days=1)
    while monday.weekday() != 0:
        monday -= one_day
        SDATE = monday.strftime('%Y-%m-%d-00-00-00')
    while friday.weekday() != 4:
        friday -= one_day
        EDATE= friday.strftime('%Y-%m-%d-23-59-59')
    return str('&sdate=')+str(SDATE)+str('&edate=')+str(EDATE)
    #return '&sdate=2020-03-02-00-00-00&edate=2020-03-06-23-59-59' #(报告是每周六或周日做,如果遇到下周补做,可手动设定return值)
 
 
allsensors_id = ["12036","11625","9603","12044","9654","9569","9755","9772","9705","11472","9865","9718","9675","9736","9886","11525","11991","12207"]
allsensors_name = ["HKG","BEJ","CDU","CKG","DLN","GZU","HZU","JNA","NJG","SHA","SHA_MCU","SUZ","SZN","TJN","WHN","XMN","TPE","MNG"]
#(SensorsID可在PRGT该Sensors页面的Url中查看到)
rundate=reportdate()[33:43]
#rundate=datetime.date.today().strftime('%Y-%m-%d')
urlhead='http://cngdcop01/historicdata_html.htm?&username=prtgadmin&password=XXXXX&avg=120&pctavg=300&pctshow=false&pct=95&pctmode=false&hide=-1,2,3,6,7,8,9,10,11,12,13,14&id='
graphs_path=str('C:\\Users\\lynguo\\Desktop\\PRTGCAP\\MPLS\\')+str(rundate)+str('\\')
os.makedirs(graphs_path)
driver = webdriver.Chrome()
driver.set_window_size(1566, 892)
 
for sid in range(len(allsensors_id)):
    sensors_id=allsensors_id[sid]
    sensors_name=allsensors_name[sid]
    sfullurl=(str(urlhead)+str(sensors_id)+str(reportdate()))
    driver.get(sfullurl)
    graphfile_path = str(graphs_path)+str('\\')+str(sensors_name)+str('.png')
    driver.get_screenshot_as_file(graphfile_path)
    time.sleep(3)
 
driver.close()

  

运行结果

 

posted @   Monbro  阅读(384)  评论(0编辑  收藏  举报
编辑推荐:
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
· dotnet 源代码生成器分析器入门
阅读排行:
· ThreeJs-16智慧城市项目(重磅以及未来发展ai)
· .NET 原生驾驭 AI 新基建实战系列(一):向量数据库的应用与畅想
· Ai满嘴顺口溜,想考研?浪费我几个小时
· Browser-use 详细介绍&使用文档
· 软件产品开发中常见的10个问题及处理方法
点击右上角即可分享
微信分享提示