Java多线程之JUC包:CountDownLatch源码学习笔记

若有不正之处请多多谅解,并欢迎批评指正。

请尊重作者劳动成果,转载请标明原文链接:

http://www.cnblogs.com/go2sea/p/5623218.html

 

我们已经了解了AQS的大致工作流程,接下来看下AQS的一个应用——CountDownLatch。

我们已经知道,AQS提供了两种模式:独占模式&共享模式。CountDownLatch就是一个使用共享模式的自定义同步器实现的共享锁。

源代码:

/*
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 */

/*
 *
 *
 *
 *
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent;
import java.util.concurrent.locks.*;
import java.util.concurrent.atomic.*;

/**
 * A synchronization aid that allows one or more threads to wait until
 * a set of operations being performed in other threads completes.
 *
 * <p>A {@code CountDownLatch} is initialized with a given <em>count</em>.
 * The {@link #await await} methods block until the current count reaches
 * zero due to invocations of the {@link #countDown} method, after which
 * all waiting threads are released and any subsequent invocations of
 * {@link #await await} return immediately.  This is a one-shot phenomenon
 * -- the count cannot be reset.  If you need a version that resets the
 * count, consider using a {@link CyclicBarrier}.
 *
 * <p>A {@code CountDownLatch} is a versatile synchronization tool
 * and can be used for a number of purposes.  A
 * {@code CountDownLatch} initialized with a count of one serves as a
 * simple on/off latch, or gate: all threads invoking {@link #await await}
 * wait at the gate until it is opened by a thread invoking {@link
 * #countDown}.  A {@code CountDownLatch} initialized to <em>N</em>
 * can be used to make one thread wait until <em>N</em> threads have
 * completed some action, or some action has been completed N times.
 *
 * <p>A useful property of a {@code CountDownLatch} is that it
 * doesn't require that threads calling {@code countDown} wait for
 * the count to reach zero before proceeding, it simply prevents any
 * thread from proceeding past an {@link #await await} until all
 * threads could pass.
 *
 * <p><b>Sample usage:</b> Here is a pair of classes in which a group
 * of worker threads use two countdown latches:
 * <ul>
 * <li>The first is a start signal that prevents any worker from proceeding
 * until the driver is ready for them to proceed;
 * <li>The second is a completion signal that allows the driver to wait
 * until all workers have completed.
 * </ul>
 *
 * <pre>
 * class Driver { // ...
 *   void main() throws InterruptedException {
 *     CountDownLatch startSignal = new CountDownLatch(1);
 *     CountDownLatch doneSignal = new CountDownLatch(N);
 *
 *     for (int i = 0; i < N; ++i) // create and start threads
 *       new Thread(new Worker(startSignal, doneSignal)).start();
 *
 *     doSomethingElse();            // don't let run yet
 *     startSignal.countDown();      // let all threads proceed
 *     doSomethingElse();
 *     doneSignal.await();           // wait for all to finish
 *   }
 * }
 *
 * class Worker implements Runnable {
 *   private final CountDownLatch startSignal;
 *   private final CountDownLatch doneSignal;
 *   Worker(CountDownLatch startSignal, CountDownLatch doneSignal) {
 *      this.startSignal = startSignal;
 *      this.doneSignal = doneSignal;
 *   }
 *   public void run() {
 *      try {
 *        startSignal.await();
 *        doWork();
 *        doneSignal.countDown();
 *      } catch (InterruptedException ex) {} // return;
 *   }
 *
 *   void doWork() { ... }
 * }
 *
 * </pre>
 *
 * <p>Another typical usage would be to divide a problem into N parts,
 * describe each part with a Runnable that executes that portion and
 * counts down on the latch, and queue all the Runnables to an
 * Executor.  When all sub-parts are complete, the coordinating thread
 * will be able to pass through await. (When threads must repeatedly
 * count down in this way, instead use a {@link CyclicBarrier}.)
 *
 * <pre>
 * class Driver2 { // ...
 *   void main() throws InterruptedException {
 *     CountDownLatch doneSignal = new CountDownLatch(N);
 *     Executor e = ...
 *
 *     for (int i = 0; i < N; ++i) // create and start threads
 *       e.execute(new WorkerRunnable(doneSignal, i));
 *
 *     doneSignal.await();           // wait for all to finish
 *   }
 * }
 *
 * class WorkerRunnable implements Runnable {
 *   private final CountDownLatch doneSignal;
 *   private final int i;
 *   WorkerRunnable(CountDownLatch doneSignal, int i) {
 *      this.doneSignal = doneSignal;
 *      this.i = i;
 *   }
 *   public void run() {
 *      try {
 *        doWork(i);
 *        doneSignal.countDown();
 *      } catch (InterruptedException ex) {} // return;
 *   }
 *
 *   void doWork() { ... }
 * }
 *
 * </pre>
 *
 * <p>Memory consistency effects: Until the count reaches
 * zero, actions in a thread prior to calling
 * {@code countDown()}
 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
 * actions following a successful return from a corresponding
 * {@code await()} in another thread.
 *
 * @since 1.5
 * @author Doug Lea
 */
public class CountDownLatch {
    /**
     * Synchronization control For CountDownLatch.
     * Uses AQS state to represent count.
     */
    private static final class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 4982264981922014374L;

        Sync(int count) {
            setState(count);
        }

        int getCount() {
            return getState();
        }

        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

        protected boolean tryReleaseShared(int releases) {
            // Decrement count; signal when transition to zero
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }
    }

    private final Sync sync;

    /**
     * Constructs a {@code CountDownLatch} initialized with the given count.
     *
     * @param count the number of times {@link #countDown} must be invoked
     *        before threads can pass through {@link #await}
     * @throws IllegalArgumentException if {@code count} is negative
     */
    public CountDownLatch(int count) {
        if (count < 0) throw new IllegalArgumentException("count < 0");
        this.sync = new Sync(count);
    }

    /**
     * Causes the current thread to wait until the latch has counted down to
     * zero, unless the thread is {@linkplain Thread#interrupt interrupted}.
     *
     * <p>If the current count is zero then this method returns immediately.
     *
     * <p>If the current count is greater than zero then the current
     * thread becomes disabled for thread scheduling purposes and lies
     * dormant until one of two things happen:
     * <ul>
     * <li>The count reaches zero due to invocations of the
     * {@link #countDown} method; or
     * <li>Some other thread {@linkplain Thread#interrupt interrupts}
     * the current thread.
     * </ul>
     *
     * <p>If the current thread:
     * <ul>
     * <li>has its interrupted status set on entry to this method; or
     * <li>is {@linkplain Thread#interrupt interrupted} while waiting,
     * </ul>
     * then {@link InterruptedException} is thrown and the current thread's
     * interrupted status is cleared.
     *
     * @throws InterruptedException if the current thread is interrupted
     *         while waiting
     */
    public void await() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }

    /**
     * Causes the current thread to wait until the latch has counted down to
     * zero, unless the thread is {@linkplain Thread#interrupt interrupted},
     * or the specified waiting time elapses.
     *
     * <p>If the current count is zero then this method returns immediately
     * with the value {@code true}.
     *
     * <p>If the current count is greater than zero then the current
     * thread becomes disabled for thread scheduling purposes and lies
     * dormant until one of three things happen:
     * <ul>
     * <li>The count reaches zero due to invocations of the
     * {@link #countDown} method; or
     * <li>Some other thread {@linkplain Thread#interrupt interrupts}
     * the current thread; or
     * <li>The specified waiting time elapses.
     * </ul>
     *
     * <p>If the count reaches zero then the method returns with the
     * value {@code true}.
     *
     * <p>If the current thread:
     * <ul>
     * <li>has its interrupted status set on entry to this method; or
     * <li>is {@linkplain Thread#interrupt interrupted} while waiting,
     * </ul>
     * then {@link InterruptedException} is thrown and the current thread's
     * interrupted status is cleared.
     *
     * <p>If the specified waiting time elapses then the value {@code false}
     * is returned.  If the time is less than or equal to zero, the method
     * will not wait at all.
     *
     * @param timeout the maximum time to wait
     * @param unit the time unit of the {@code timeout} argument
     * @return {@code true} if the count reached zero and {@code false}
     *         if the waiting time elapsed before the count reached zero
     * @throws InterruptedException if the current thread is interrupted
     *         while waiting
     */
    public boolean await(long timeout, TimeUnit unit)
        throws InterruptedException {
        return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
    }

    /**
     * Decrements the count of the latch, releasing all waiting threads if
     * the count reaches zero.
     *
     * <p>If the current count is greater than zero then it is decremented.
     * If the new count is zero then all waiting threads are re-enabled for
     * thread scheduling purposes.
     *
     * <p>If the current count equals zero then nothing happens.
     */
    public void countDown() {
        sync.releaseShared(1);
    }

    /**
     * Returns the current count.
     *
     * <p>This method is typically used for debugging and testing purposes.
     *
     * @return the current count
     */
    public long getCount() {
        return sync.getCount();
    }

    /**
     * Returns a string identifying this latch, as well as its state.
     * The state, in brackets, includes the String {@code "Count ="}
     * followed by the current count.
     *
     * @return a string identifying this latch, as well as its state
     */
    public String toString() {
        return super.toString() + "[Count = " + sync.getCount() + "]";
    }
}
View Code

可以看到,CountDownLatch只有一个成员变量,是它自定义的同步器:

private final Sync sync;

一、await方法

    public void await() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }

    public boolean await(long timeout, TimeUnit unit)
        throws InterruptedException {
        return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
    }

 

CountDownLatch提供了两种await方法:有等待时长限制和一直等待。两种均能响应中断(归根到底是UNSAFE.park可响应中断。但是如果是定时的park,则不能判断被唤醒的原因是超时还是被中断,因此需要isInterrupted判断下,而此方法会清除中断标志,因此如果是延迟处理要“补上”)。

await()方法调用了同步器的acquireSharedInterruptibly方法,这个方法由上层AQS提供,它调用了我们重写的tryAcquireShared方法而封装了排队等待、唤醒、响应中断的细节,我们只关注自定义同步器中的tryAcquireShared方法即可:

        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

 

注意,tryAcquireShared方法的返回值的意义在AQS是这样规定的:负值代表获取资源失败,非负值代表成功获取资源后剩余资源的数量。而这里当getState返回值为0的时候,我们却总是返回1,表示仍有剩余资源。这看上去并不合理,但这确实是正确的:因为可能有多个线程调用了await,同时在队列中等待资源,CountDownLatch的语义要求我们在倒计时结束有唤醒所有等待线程。因此我们在成功获取资源后,总是要告诉AQS“还有剩余”,这样AQS便会继续唤醒队列中的其他等待线程(由AQS中的setHeadAndPropagate方法调用doReleaseShared来唤醒)。一句话:成功获取总返回1是为了保证唤醒的“延续性”。

有等待时长限制的await(long, TimeUnit)方法调用了同步器的tryAcquireSharedNanos方法:

    public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquireShared(arg) >= 0 ||
            doAcquireSharedNanos(arg, nanosTimeout);
    }

 

这个方法首先检测中断,然后试图获取,失败后进入“自旋-等待”阶段,直到成功获取或被中断。这是AQS的内容,不再赘述。

二、countDown方法

    public void countDown() {
        sync.releaseShared(1);
    }

 

countDown方法调用releaseShared释放资源:

    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

 

releaseShared会调用tryReleaseShared方法:

        protected boolean tryReleaseShared(int releases) {
            // Decrement count; signal when transition to zero
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }

方法一直自旋,直到成功释放或倒计时完毕。因为可能有超过count的线程调用countDown,因此releaseShared是可能失败的。当然在释放过程中也可能发生竞争,CAS自旋保证竞争发生时的正确执行。

三、总结

CountDownLatch是一个共享锁,但有些特别:他在初始化的时候锁住了所有共享资源,任何线程都可以调用countDown方法释放一个资源,当所有资源都被释放后,所有等待线程被唤醒。从而实现了倒计时的效果。

CountDownLatch是一次性的,计数值不可恢复。

 

posted @ 2016-06-28 14:11  开方乘十  阅读(572)  评论(0编辑  收藏  举报