先验概率:根据以往经验和分析得到的概率;
后验概率:事情已经发生,这件事情的发生是由某个原因引起的可能性的大小。(种果因概率,即在一个结果已经发生的条件下,可能是其中某一个原因造成的概率有多大。)
1)先验:根据统计历史上的经验、常识当下事件发生的概率;
2)似然:当下事件由果及因发生的概率;
3)后验:当下事件由因及果发生的概率。
先验概率分布,即关于某个变量 p 的概率分布p(θ) ;对于结果 x ,在参数集合 θ 上的似然,就是在给定这些参数值的基础上,观察到的结果的概率 L(θ|x)=p(x|θ) ;后验概率是关于参数 θ 在给定的证据信息 X 下的概率: p(θ|x) 。后验概率定义如下:p(θ|x)=p(x|θ)p(θ)/p(x)。
举例理解(1):
先验——根据若干年的统计(经验)或者气候(常识),某地方下雨的概率;
似然——下雨(果)的时候有乌云(因/证据/观察的数据)的概率,即已经有了果,对证据发生的可能性描述;
后验——根据天上有乌云(原因或者证据/观察数据),下雨(结果)的概率。
后验 ~ 先验*似然 : 存在下雨的可能(先验),下雨之前会有乌云(似然)~ 通过现在有乌云推断下雨概率(后验)。
先验概率可理解为统计概率,后验概率可理解为条件概率。
举例理解(2):设定背景:酒至半酣,忽阴云漠漠,骤雨将至。
情景一:
“天不会下雨的,历史上这里下雨的概率是20%”----先验概率
“但阴云漠漠时,下雨的概率是80%”----后验概率
情景二:
“飞飞别急着走啊,历史上酒桌上死人的概率只有5%“----先验概率
”可他是曹操啊,梦里都杀人“----后验概率
举例理解(3):用“瓜熟蒂落”这个因果例子,从概率的角度理解,
先验概率,就是常识、经验所透露出的“因”的概率,即瓜熟的概率。
后验概率,就是在知道“果”之后,去推测“因”的概率,也就是说,如果已经知道瓜蒂脱落,那么瓜熟的概率是多少。
后验和先验的关系可以通过贝叶斯公式来求。也就是:P(瓜熟 | 已知蒂落)=P(瓜熟)×P(蒂落 | 瓜熟)/ P(蒂落)
似然函数,根据已知结果去推测固有性质的可能性,是对固有性质的拟合程度,所以不能称为概率。在这里就是说,不要管什么瓜熟的概率,只关心瓜熟与蒂落的关系。如果蒂落了,那么对瓜熟这一属性的拟合程度有多大。似然函数,一般写成L(瓜熟 | 已知蒂落),和后验概率非常像,区别在于似然函数把瓜熟看成一个肯定存在的属性,而后验概率把瓜熟看成一个随机变量。
似然函数和条件概率的关系:似然函数就是条件概率的逆反。意为:L(瓜熟 | 已知蒂落)= C × P(蒂落 | 瓜熟),C是常数。具体来说,现在有1000个瓜熟了,落了800个,那条件概率是0.8。那我也可以说,这1000个瓜都熟的可能性是0.8C。之所以加个常数项,是因为似然函数的具体值没有意义,只有看它的相对大小或者两个似然值的比率才有意义,后面还有例子。
----------------------------------------------------------------------------------------------------
同理,如果理解上面的意义,分布就是一“串”概率。
先验分布:现在常识不但告诉我们瓜熟的概率,也说明了瓜青、瓜烂的概率
后验分布:在知道蒂落之后,瓜青、瓜熟、瓜烂的概率都是多少
似然函数:在知道蒂落的情形下,如果以瓜青为必然属性,它的可能性是多少?如果以瓜熟为必然属性,它的可能性是多少?如果以瓜烂为必然属性,它的可能性是多少?似然函数不是分布,只是对上述三种情形下各自的可能性描述。
那么我们把这三者结合起来,就可以得到:后验分布 正比于 先验分布 × 似然函数。
先验就是设定一种情形,似然就是看这种情形下发生的可能性,两者合起来就是后验的概率。
至于似然估计:就是不管先验和后验那一套,只看似然函数,现在蒂落了,可能有瓜青、瓜熟、瓜烂,这三种情况都有个似然值(L(瓜青):0.6、L(瓜熟):0.8、L(瓜烂):0.7),我们采用最大的那个,即瓜熟,这个时候假定瓜熟为必然属性是最有可能的。
内容源自博客:https://blog.csdn.net/fjssharpsword/article/details/72356277
参考博客:https://www.cnblogs.com/yemanxiaozu/p/7680761.html