这个程序为简单的三层结构组成:输入层、中间层、输出层
运行环境为 ubuntu
要理清各层间变量个数
import numpy as np import matplotlib.pyplot as plt import tensorflow as tf #使用numpy生成200个随机点 x_data=np.linspace(-0.5,0.5,200)[:,np.newaxis] noise=np.random.normal(0,0.02,x_data.shape) y_data=np.square(x_data)+noise #定义两个placeholder x=tf.placeholder(tf.float32,[None,1]) y=tf.placeholder(tf.float32,[None,1]) #定义神经网络中间层 Weights_L1=tf.Variable(tf.random_normal([1,10])) biases_L1=tf.Variable(tf.zeros([1,10])) Wx_plus_b_L1=tf.matmul(x,Weights_L1)+biases_L1 L1=tf.nn.tanh(Wx_plus_b_L1) #定义神经网络输出层 Weights_L2=tf.Variable(tf.random_normal([10,1])) biases_L2=tf.Variable(tf.zeros([1,1])) Wx_plus_b_L2=tf.matmul(L1,Weights_L2)+biases_L2 prediction=tf.nn.tanh(Wx_plus_b_L2) #二次代价函数 loss=tf.reduce_mean(tf.square(y-prediction)) #使用梯度下降法训练 train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss) with tf.Session() as sess: #变量初始化 sess.run(tf.global_variables_initializer()) for _ in range(2000): sess.run(train_step,feed_dict={x:x_data,y:y_data}) #获取预测值 prediction_value=sess.run(prediction,feed_dict={x:x_data}) #画图 plt.figure() plt.scatter(x_data,y_data) plt.plot(x_data,prediction_value,'r-',lw=5) plt.show()
最终的运行结果图片
目录:
- tensorflow简介、目录
- tensorflow中的图(02-1)
- tensorflow变量的使用(02-2)
- tensorflow中的Fetch、Feed(02-3)
- tensorflow版helloworld---拟合线性函数的k和b(02-4)
- tensorflow非线性回归(03-1)
- MNIST手写数字分类simple版(03-2)
- 二次代价函数、交叉熵(cross-entropy)、对数似然代价函数(log-likelihood cost)(04-1)
- 多层网络通过防止过拟合,增加模型的准确率(04-2)
- 修改优化器进一步提升准确率(04-3)
- 手写数字识别-卷积神经网络cnn(06-2)
- 循环神经网络rnn与长短时记忆神经网络简述(07-2)
- 循环神经网络lstm代码实现(07-3)
- tensorflow模型保存和使用08
- 下载inception v3 google训练好的模型并解压08-3
- 使用inception v3做各种图像分类识别08-4
- word2vec模型训练简单案例
- word2vec+textcnn文本分类简述及代码