Spark学习笔记--Graphx
浅谈Graphx: http://blog.csdn.net/shangwen_/article/details/38645601
Pregel: http://blog.csdn.net/shangwen_/article/details/38479835
Bagel: http://ju.outofmemory.cn/entry/712
Graphx的主要接口:
基本信息接口(numEdges , num Vertices , degrees(in/out) )
聚合操作 (mapVertices , mapEdges , mapTriplets)
转换接口 (mapReduceTriplets , collectNeighbors)
结构操作 (reverse , subgraph , mask , groupEdges)
缓存操作 (cache , unpersistVertices)
要点:
每个图由3个RDD组成
名称 | 对应RDD | 包含的属性 |
Vertices | VertexRDD | ID、点属性 |
Edges | EdgeRDD | 源顶点的ID,目标顶点的ID,边属性 |
Triplets | 源顶点ID,源顶点属性,边属性,目标顶点ID,目标顶点属性 |
Triplets其实是对Vertices和Edges做了join操作
点分割、边分割
应用:
基于最大连通图的社区发现
基于三角形计数的关系衡量
基于随机游走的用户属性传播
注意:
GraphX通过引入*Resilient Distributed Property Graph*(一种点和边都带属性的有向多图)扩展了Spark RDD这种抽象数据结构,这种Property Graph拥有两种Table和Graph两种视图(及视图对应的一套API),而只有一份物理存储。
Table视图将视图看成Vertex Property Table和Edge Property Table等的组合,这些组合继承了Spark RDD的API(filter,map等)。
Graph视图上包括reverse/subgraph/mapV(E)/joinV(E)/mrTriplets等操作。
Graph上的函数:(官网)
/** Summary of the functionality in the property graph */ class Graph[VD, ED] { // Information about the Graph =================================================================== val numEdges: Long val numVertices: Long val inDegrees: VertexRDD[Int] val outDegrees: VertexRDD[Int] val degrees: VertexRDD[Int] // Views of the graph as collections ============================================================= val vertices: VertexRDD[VD] val edges: EdgeRDD[ED] val triplets: RDD[EdgeTriplet[VD, ED]] // Functions for caching graphs ================================================================== def persist(newLevel: StorageLevel = StorageLevel.MEMORY_ONLY): Graph[VD, ED] def cache(): Graph[VD, ED] def unpersistVertices(blocking: Boolean = true): Graph[VD, ED] // Change the partitioning heuristic ============================================================ def partitionBy(partitionStrategy: PartitionStrategy): Graph[VD, ED] // Transform vertex and edge attributes ========================================================== def mapVertices[VD2](map: (VertexID, VD) => VD2): Graph[VD2, ED] def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2] def mapEdges[ED2](map: (PartitionID, Iterator[Edge[ED]]) => Iterator[ED2]): Graph[VD, ED2] def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2] def mapTriplets[ED2](map: (PartitionID, Iterator[EdgeTriplet[VD, ED]]) => Iterator[ED2]) : Graph[VD, ED2] // Modify the graph structure ==================================================================== def reverse: Graph[VD, ED] def subgraph( epred: EdgeTriplet[VD,ED] => Boolean = (x => true), vpred: (VertexID, VD) => Boolean = ((v, d) => true)) : Graph[VD, ED] def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED] def groupEdges(merge: (ED, ED) => ED): Graph[VD, ED] // Join RDDs with the graph ====================================================================== def joinVertices[U](table: RDD[(VertexID, U)])(mapFunc: (VertexID, VD, U) => VD): Graph[VD, ED] def outerJoinVertices[U, VD2](other: RDD[(VertexID, U)]) (mapFunc: (VertexID, VD, Option[U]) => VD2) : Graph[VD2, ED] // Aggregate information about adjacent triplets ================================================= def collectNeighborIds(edgeDirection: EdgeDirection): VertexRDD[Array[VertexID]] def collectNeighbors(edgeDirection: EdgeDirection): VertexRDD[Array[(VertexID, VD)]] def aggregateMessages[Msg: ClassTag]( sendMsg: EdgeContext[VD, ED, Msg] => Unit, mergeMsg: (Msg, Msg) => Msg, tripletFields: TripletFields = TripletFields.All) : VertexRDD[A] // Iterative graph-parallel computation ========================================================== def pregel[A](initialMsg: A, maxIterations: Int, activeDirection: EdgeDirection)( vprog: (VertexID, VD, A) => VD, sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexID,A)], mergeMsg: (A, A) => A) : Graph[VD, ED] // Basic graph algorithms ======================================================================== def pageRank(tol: Double, resetProb: Double = 0.15): Graph[Double, Double] def connectedComponents(): Graph[VertexID, ED] def triangleCount(): Graph[Int, ED] def stronglyConnectedComponents(numIter: Int): Graph[VertexID, ED] }
pregel函数参数解释:
VD:顶点的数据类型。
ED:边的数据类型
A:Pregel message的类型。
graph:输入的图
initialMsg:在第一次迭代的时候顶点收到的消息。
maxIterations:迭代的次数
vprog:用户定义的顶点程序运行在每一个顶点中,负责接收进来的信息,和计算新的顶点值。在第一次迭代的时候,所有的顶点程序将会被默认的defaultMessage调用,在次轮迭代中,顶点程序只有接收到message才会被调用。
sendMsg:用户提供的函数,应用于边缘顶点在当前迭代中接收message
mergeMsg:用户提供定义的函数,将两个类型为A的message合并为一个类型为A的message。(thisfunction must be commutative and associative and ideally the size of A shouldnot increase)
示例:
import org.apache.spark.graphx._ // Import random graph generation library import org.apache.spark.graphx.util.GraphGenerators // A graph with edge attributes containing distances val graph: Graph[Long, Double] = GraphGenerators.logNormalGraph(sc, numVertices = 100).mapEdges(e => e.attr.toDouble) val sourceId: VertexId = 42 // The ultimate source // Initialize the graph such that all vertices except the root have distance infinity. val initialGraph = graph.mapVertices((id, _) => if (id == sourceId) 0.0 else Double.PositiveInfinity) val sssp = initialGraph.pregel(Double.PositiveInfinity)( (id, dist, newDist) => math.min(dist, newDist), // Vertex Program triplet => { // Send Message if (triplet.srcAttr + triplet.attr < triplet.dstAttr) { Iterator((triplet.dstId, triplet.srcAttr + triplet.attr)) } else { Iterator.empty } }, (a,b) => math.min(a,b) // Merge Message ) println(sssp.vertices.collect.mkString("\n"))