CF1263F

题目描述

给出一个类似这样

的图,求删掉最多的黑边使得每个特殊点和至少一个节点1连通

保证上下两棵树都存在一种dfs序使得访问特殊点的顺序为1~n

题解

设f[i][j]表示上面的树最后一个特殊点为i,j同理的最小选取数

每次加上lca-->max(i,j)+1的路径,由于题目保证了dfs顺序,所以不会出现不合法的情况

code

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
using namespace std;

int a[10001][2];
int ls[5001];
int fa[2][5001][11];
int d[2][5001];
int f[1001][1001];
int n,A,B,i,j,k,l,len,ans;

void New(int x,int y)
{
	++len;
	a[len][0]=y;
	a[len][1]=ls[x];
	ls[x]=len;
}

void dfs(int type,int t)
{
	int i;
	
	fo(i,1,10)
	fa[type][t][i]=fa[type][fa[type][t][i-1]][i-1];
	
	if (t<=n) return;
	
	for (i=ls[t]; i; i=a[i][1])
	{
		fa[type][a[i][0]][0]=t;
		d[type][a[i][0]]=d[type][t]+1;
		
		dfs(type,a[i][0]);
	}
}

void swap(int &x,int &y)
{
	int z=x;
	x=y;
	y=z;
}

int lca(int type,int x,int y)
{
	int i;
	
	if (!x)
	{
		if (!type)
		return n+1;
		else
		return n+A+1;
	}
	
	if (d[type][x]<d[type][y]) swap(x,y);
	
	fd(i,10,0)
	if (d[type][fa[type][x][i]]>=d[type][y])
	x=fa[type][x][i];
	
	fd(i,10,0)
	if (fa[type][x][i]!=fa[type][y][i])
	x=fa[type][x][i],y=fa[type][y][i];
	
	if (x!=y)
	x=fa[type][x][0];
	
	return x;
}

int main()
{
//	freopen("f.in","r",stdin);
	
	scanf("%d",&n);
	scanf("%d",&A);
	fo(i,2,A)
	{
		scanf("%d",&j);
		New(j+n,i+n);
	}
	fo(i,1,n)
	{
		scanf("%d",&j);
		New(j+n,i);
	}
	scanf("%d",&B);
	fo(i,2,B)
	{
		scanf("%d",&j);
		New(j+n+A,i+n+A);
	}
	fo(i,1,n)
	{
		scanf("%d",&j);
		New(j+n+A,i);
	}
	
	d[0][n+1]=d[1][n+A+1]=1;
	dfs(0,n+1);
	dfs(1,n+A+1);
	
	memset(f,127,sizeof(f));
	f[0][0]=0;
	
	fo(i,0,n-1)
	{
		fo(j,0,n-1)
		{
			k=max(i,j)+1;
			
			l=lca(0,i,k);
			f[k][j]=min(f[k][j],f[i][j]+(d[0][k]-d[0][l]-1));
			
			l=lca(1,j,k);
			f[i][k]=min(f[i][k],f[i][j]+(d[1][k]-d[1][l]-1));
		}
	}
	
	ans=2133333333;
	fo(i,0,n-1)
	ans=min(ans,min(f[i][n],f[n][i]));
	
	printf("%d\n",(A-1)+(B-1)-ans);
}
posted @   gmh77  阅读(203)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示