二叉树的广度优先遍历、深度优先遍历的递归和非递归实现方式
二叉树的遍历方式:
1、深度优先:递归,非递归实现方式
1)先序遍历:先访问根节点,再依次访问左子树和右子树
2)中序遍历:先访问左子树,再访问根节点吗,最后访问右子树
3)后序遍历:先访问左子树,再访问右子树,最后访问根节点
2、广度优先
按照树的深度,一层一层的访问树的节点
1 package Solution; 2 3 import java.util.LinkedList; 4 import java.util.Queue; 5 import java.util.Stack; 6 7 8 public class BinaryTree { 9 10 // 二叉树节点 11 public static class BinaryTreeNode { 12 int value; 13 BinaryTreeNode left; 14 BinaryTreeNode right; 15 16 public BinaryTreeNode(int value) { 17 this.value = value; 18 } 19 20 public BinaryTreeNode(int value, BinaryTreeNode left, 21 BinaryTreeNode right) { 22 super(); 23 this.value = value; 24 this.left = left; 25 this.right = right; 26 } 27 28 } 29 30 // 访问树的节点 31 public static void visit(BinaryTreeNode node) { 32 System.out.println(node.value); 33 } 34 35 /** 递归实现二叉树的先序遍历 */ 36 public static void preOrder(BinaryTreeNode node) { 37 if (node != null) { 38 visit(node); 39 preOrder(node.left); 40 preOrder(node.right); 41 } 42 } 43 44 /** 递归实现二叉树的中序遍历 */ 45 public static void inOrder(BinaryTreeNode node) { 46 if (node != null) { 47 inOrder(node.left); 48 visit(node); 49 inOrder(node.right); 50 } 51 } 52 53 /** 递归实现二叉树的后序遍历 */ 54 public static void postOrder(BinaryTreeNode node) { 55 if (node != null) { 56 postOrder(node.left); 57 postOrder(node.right); 58 visit(node); 59 } 60 } 61 62 /** 非递归实现二叉树的先序遍历 */ 63 public static void iterativePreorder(BinaryTreeNode node) { 64 Stack<BinaryTreeNode> stack = new Stack<>(); 65 if (node != null) { 66 stack.push(node); 67 while (!stack.empty()) { 68 node = stack.pop(); 69 // 先访问节点 70 visit(node); 71 // 把右子结点压入栈 72 if (node.right != null) { 73 stack.push(node.right); 74 } 75 // 把左子结点压入栈 76 if (node.left != null) { 77 stack.push(node.left); 78 } 79 } 80 } 81 } 82 83 /** 非递归实现二叉树的中序遍历 */ 84 public static void iterativeInOrder(BinaryTreeNode root) { 85 Stack<BinaryTreeNode> stack = new Stack<>(); 86 BinaryTreeNode node = root; 87 while (node != null || stack.size() > 0) { 88 // 把当前节点的所有左侧子结点压入栈 89 while (node != null) { 90 stack.push(node); 91 node = node.left; 92 } 93 // 访问节点,处理该节点的右子树 94 if (stack.size() > 0) { 95 node = stack.pop(); 96 visit(node); 97 node = node.right; 98 } 99 } 100 } 101 102 /** 非递归使用单栈实现二叉树后序遍历 */ 103 public static void iterativePostOrder(BinaryTreeNode root) { 104 Stack<BinaryTreeNode> stack = new Stack<>(); 105 BinaryTreeNode node = root; 106 // 访问根节点时判断其右子树是够被访问过 107 BinaryTreeNode preNode = null; 108 while (node != null || stack.size() > 0) { 109 // 把当前节点的左侧节点全部入栈 110 while (node != null) { 111 stack.push(node); 112 node = node.left; 113 } 114 if (stack.size() > 0) { 115 BinaryTreeNode temp = stack.peek().right; 116 // 一个根节点被访问的前提是:无右子树或右子树已被访问过 117 if (temp == null || temp == preNode) { 118 node = stack.pop(); 119 visit(node); 120 preNode = node;// 记录刚被访问过的节点 121 node = null; 122 } else { 123 // 处理右子树 124 node = temp; 125 } 126 } 127 } 128 } 129 130 /** 非递归使用双栈实现二叉树后序遍历 */ 131 public static void iterativePostOrderByTwoStacks(BinaryTreeNode root) { 132 Stack<BinaryTreeNode> stack = new Stack<>(); 133 Stack<BinaryTreeNode> temp = new Stack<>(); 134 BinaryTreeNode node = root; 135 while (node != null || stack.size() > 0) { 136 // 把当前节点和其右侧子结点推入栈 137 while (node != null) { 138 stack.push(node); 139 temp.push(node); 140 node = node.right; 141 } 142 // 处理栈顶节点的左子树 143 if (stack.size() > 0) { 144 node = stack.pop(); 145 node = node.left; 146 } 147 } 148 while (temp.size() > 0) { 149 node = temp.pop(); 150 visit(node); 151 } 152 } 153 154 /** 二叉树广度优先遍历——层序遍历 */ 155 public static void layerTraversal(BinaryTreeNode root) { 156 Queue<BinaryTreeNode> queue = new LinkedList<>(); 157 158 if (root != null) { 159 queue.add(root); 160 while (!queue.isEmpty()) { 161 BinaryTreeNode currentNode = queue.poll(); 162 visit(currentNode); 163 if (currentNode.left != null) { 164 queue.add(currentNode.left); 165 } 166 167 if (currentNode.right != null) { 168 queue.add(currentNode.right); 169 } 170 171 } 172 } 173 } 174 175 public static void main(String[] args) { 176 177 // 构造二叉树 178 // 1 179 // / \ 180 // 2 3 181 // / / \ 182 // 4 5 7 183 // \ / 184 // 6 8 185 BinaryTreeNode root = new BinaryTreeNode(1); 186 BinaryTreeNode node2 = new BinaryTreeNode(2); 187 BinaryTreeNode node3 = new BinaryTreeNode(3); 188 BinaryTreeNode node4 = new BinaryTreeNode(4); 189 BinaryTreeNode node5 = new BinaryTreeNode(5); 190 BinaryTreeNode node6 = new BinaryTreeNode(6); 191 BinaryTreeNode node7 = new BinaryTreeNode(7); 192 BinaryTreeNode node8 = new BinaryTreeNode(8); 193 194 root.left = node2; 195 root.right = node3; 196 node2.left = node4; 197 node3.left = node5; 198 node3.right = node7; 199 node5.right = node6; 200 node7.left = node8; 201 System.out.println("二叉树先序遍历"); 202 preOrder(root); 203 System.out.println("二叉树先序遍历非递归"); 204 iterativePreorder(root); 205 System.out.println("二叉树中序遍历"); 206 inOrder(root); 207 System.out.println("二叉树中序遍历非递归"); 208 iterativeInOrder(root); 209 System.out.println("二叉树后序遍历"); 210 postOrder(root); 211 System.out.println("二叉树单栈非递归后序遍历"); 212 iterativePostOrder(root); 213 System.out.println("二叉树双栈非递归后序遍历"); 214 iterativePostOrderByTwoStacks(root); 215 System.out.println("二叉树层树序遍历"); 216 layerTraversal(root); 217 } 218 }