线程池的学习(七)
本章节主要介绍下Disruptor并发框架
并发编程网:剖析Disruptor:为什么会这么快?(一)Ringbuffer的特别之处
美团分享网:高性能队列——Disruptor
云栖社区网:spring-boot项目整合Disruptor的初步使用
什么是Disruptor:
Disruptor使用观察者模式, 主动将消息发送给消费者, 而不是等消费者从队列中取; 在无锁的情况下, 实现queue(环形, RingBuffer)的并发操作, 性能远高于BlockingQueue
Disruptor是一个高性能的异步处理框架,或者可以认为是最快的消息框架(轻量的JMS),也可以认为是一个观察者模式的实现,或者事件监听模式的实现。 首先说明disruptor主要功能加以说明,你可以理解为他是一种高效的"生产者-消费者"模型。也就性能远远高于传统的BlockingQueue容器。BlockingQueue是基于锁实现了生产者-消费者模型。
说明:JMS:Java消息服务英文全称:Java Message Service
Disruptor的设计方案:Disruptor通过以下设计来解决队列速度慢的问题:
- 环形数组结构:为了避免垃圾回收,采用数组而非链表。同时,数组对处理器的缓存机制更加友好。
- 元素位置定位:数组长度2^n,通过位运算,加快定位的速度。下标采取递增的形式。不用担心index溢出的问题。index是long类型,即使100万QPS的处理速度,也需要30万年才能用完。
- 无锁设计:每个生产者或者消费者线程,会先申请可以操作的元素在数组中的位置,申请到之后,直接在该位置写入或者读取数据。
下面忽略数组的环形结构,介绍一下如何实现无锁设计。整个过程通过原子变量CAS,保证操作的线程安全。
Disruptor实现特征:
细节就是在Disruptor中利用无锁的算法,所有内存的可见性和正确性都是利用内存屏障或者CAS操作。使用CAS来保证多线程安全,与大部分并发队列使用的锁相比,CAS显然要快很多。CAS是CPU级别的指令,更加轻量,不必像锁一样需要操作系统提供支持,所以每次调用不需要在用户态与内核态之间切换,也不需要上下文切换。
只有一个用例中锁是必须的,那就是BlockingWaitStrategy(阻塞等待策略),唯一的实现方法就是使用Condition实现消费者在新事件到来前等待。许多低延迟系统使用忙等待去避免Condition的抖动,然而在系统忙等待的操作中,性能可能会显著降低,尤其是在CPU资源严重受限的情况下,例如虚拟环境下的WEB服务器。
demo实现:
//定义事件event 通过Disruptor 进行交换的数据类型。 public class LongEvent { private Long value; public Long getValue() { return value; } public void setValue(Long value) { this.value = value; } }
需要让Disruptor为我们创建事件,我们同时还声明了一个EventFactory来实例化Event对象。
public class LongEventFactory implements EventFactory<LongEvent> { public Event newInstance() { return new LongEvent(); } }
生产者
import com.lmax.disruptor.RingBuffer; import java.nio.ByteBuffer; //定义生产这发送事件 public class LongEventProducer { public final RingBuffer<LongEvent> ringBuffer; public LongEventProducer(RingBuffer<LongEvent> ringBuffer) { this.ringBuffer = ringBuffer; } public void onData(ByteBuffer byteBuffer) { // 1.ringBuffer 事件队列 下一个槽 long sequence = ringBuffer.next(); Long data = null; try { //2.取出空的事件队列 LongEvent longEvent = ringBuffer.get(sequence); data = byteBuffer.getLong(0); //3.获取事件队列传递的数据 longEvent.setValue(data); try { Thread.sleep(10); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } finally { System.out.println("生产这准备发送数据"); //4.发布事件 ringBuffer.publish(sequence); } } }
消费者
public class LongEventHandler implements EventHandler<LongEvent> { @Override public void onEvent(LongEvent event, long sequence, boolean endOfBatch) throws Exception { System.out.println("消费者1:"+event.getValue()); } }
测试类
public static void main(String[] args) { // 1.创建一个可缓存的线程 提供线程来出发Consumer 的事件处理 ExecutorService executor = Executors.newCachedThreadPool(); // 2.创建工厂 EventFactory<LongEvent> eventFactory = new LongEventFactory(); // 3.创建ringBuffer 大小 int ringBufferSize = 1024 * 1024; // ringBufferSize大小一定要是2的N次方 // 4.创建Disruptor Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(eventFactory, ringBufferSize, executor,ProducerType.SINGLE, new YieldingWaitStrategy()); // 5.连接消费端方法 disruptor.handleEventsWith(new LongEventHandler()); disruptor.handleEventsWith(new LongEventHandler2()); // 6.启动 disruptor.start(); // 7.创建RingBuffer容器 RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer(); // 8.创建生产者 LongEventProducer producer = new LongEventProducer(ringBuffer); // 9.指定缓冲区大小 ByteBuffer byteBuffer = ByteBuffer.allocate(8); for (int i = 1; i <= 100; i++) { byteBuffer.putLong(0, i); producer.onData(byteBuffer); } //10.关闭disruptor和executor disruptor.shutdown(); executor.shutdown(); }
----------------------------------------------------------------------------------------------------------------------
RingBuffer底层实现
RingBuffer是一个首尾相连的环形数组,所谓首尾相连,是指当RingBuffer上的指针越过数组是上界后,继续从数组头开始遍历。因此,RingBuffer中至少有一个指针,来表示RingBuffer中的操作位置。另外,指针的自增操作需要做并发控制,Disruptor和本文的OptimizedQueue都使用CAS的乐观并发控制来保证指针自增的原子性,关于乐观并发控制之后会着重介绍。
Disruptor中的RingBuffer上只有一个指针,表示当前RingBuffer上消息写到了哪里,此外,每个消费者会维护一个sequence表示自己在RingBuffer上读到哪里,从这个角度讲,Disruptor中的RingBuffer上实际有消费者数+1个指针。由于我们要实现的是一个单消息单消费的阻塞队列,只要维护一个读指针(对应消费者)和一个写指针(对应生产者)即可,无论哪个指针,每次读写操作后都自增一次,一旦越界,即从数组头开始继续读写
Disruptor的核心概念
先从了解 Disruptor 的核心概念开始,来了解它是如何运作的。下面介绍的概念模型,既是领域对象,也是映射到代码实现上的核心对象。
RingBuffer
如其名,环形的缓冲区。曾经 RingBuffer 是 Disruptor 中的最主要的对象,但从3.0版本开始,其职责被简化为仅仅负责对通过 Disruptor 进行交换的数据(事件)进行存储和更新。在一些更高级的应用场景中,Ring Buffer 可以由用户的自定义实现来完全替代。
SequenceDisruptor
通过顺序递增的序号来编号管理通过其进行交换的数据(事件),对数据(事件)的处理过程总是沿着序号逐个递增处理。一个 Sequence 用于跟踪标识某个特定的事件处理者( RingBuffer/Consumer )的处理进度。虽然一个 AtomicLong 也可以用于标识进度,但定义 Sequence 来负责该问题还有另一个目的,那就是防止不同的 Sequence 之间的CPU缓存伪共享(Flase Sharing)问题。(注:这是 Disruptor 实现高性能的关键点之一,网上关于伪共享问题的介绍已经汗牛充栋,在此不再赘述)。
Sequencer:是 Disruptor 的真正核心。此接口有两个实现类 SingleProducerSequencer、MultiProducerSequencer ,它们定义在生产者和消费者之间快速、正确地传递数据的并发算法。
Sequence Barrier:用于保持对RingBuffer的 main published Sequence 和Consumer依赖的其它Consumer的 Sequence 的引用。 Sequence Barrier 还定义了决定 Consumer 是否还有可处理的事件的逻辑。
Wait Strategy:定义 Consumer 如何进行等待下一个事件的策略。 (注:Disruptor 定义了多种不同的策略,针对不同的场景,提供了不一样的性能表现)
Event:在 Disruptor 的语义中,生产者和消费者之间进行交换的数据被称为事件(Event)。它不是一个被 Disruptor 定义的特定类型,而是由 Disruptor 的使用者定义并指定。
EventProcessor:EventProcessor 持有特定消费者(Consumer)的 Sequence,并提供用于调用事件处理实现的事件循环(Event Loop)。
EventHandler:Disruptor 定义的事件处理接口,由用户实现,用于处理事件,是 Consumer 的真正实现。
Producer:即生产者,只是泛指调用 Disruptor 发布事件的用户代码,Disruptor 没有定义特定接口或类型。
- RingBuffer——Disruptor底层数据结构实现,核心类,是线程间交换数据的中转地;
- Sequencer——序号管理器,负责消费者/生产者各自序号、序号栅栏的管理和协调;
- Sequence——序号,声明一个序号,用于跟踪ringbuffer中任务的变化和消费者的消费情况;
- SequenceBarrier——序号栅栏,管理和协调生产者的游标序号和各个消费者的序号,确保生产者不会覆盖消费者未来得及处理的消息,确保存在依赖的消费者之间能够按照正确的顺序处理;
- EventProcessor——事件处理器,监听RingBuffer的事件,并消费可用事件,从RingBuffer读取的事件会交由实际的生产者实现类来消费;它会一直侦听下一个可用的序号,直到该序号对应的事件已经准备好。
- EventHandler——业务处理器,是实际消费者的接口,完成具体的业务逻辑实现,第三方实现该接口;代表着消费者。
- Producer——生产者接口,第三方线程充当该角色,producer向RingBuffer写入事件。