bzoj2956 -- 数论分块

直接分块就行了。注意要求出2和6的逆元。

代码:

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 using namespace std;
 6 #define M 19940417
 7 inline int _Min(int x,int y){return x<y?x:y;}
 8 long long i,j,Sum,Ans,n,m;
 9 int main()
10 {
11     scanf("%lld%lld",&n,&m);
12     if(n>m)swap(n,m);
13     for(i=j=1;i<=m;i=j+1){
14         j=_Min(m/(m/i),m);
15         Sum=(Sum-(m/j)*(j+i)%M*(j-i+1)%M*9970209%M)%M;
16     }
17     Sum=(Sum+m*m%M)%M;Ans=n*n%M*Sum%M;
18     for(i=j=1;i<=n;i=j+1){
19         j=_Min(n/(n/i),n);
20         Ans=(Ans-(n/j)*(j+i)%M*(j-i+1)%M*9970209%M*Sum%M)%M;
21     }
22     Ans=(Ans-n*m%M*n%M)%M;
23     for(i=j=1;i<=n;i=j+1){
24         j=_Min(n,_Min(n/(n/i),m/(m/i)));
25         Ans=(Ans+(m/i)*n%M*(i+j)%M*(j-i+1)%M*9970209%M+(n/i)*m%M*(i+j)%M*(j-i+1)%M*9970209%M+(n/i)*(m/i)%M*(i%M*(i-1)%M*((i<<1)-1)%M-j%M*(j+1)%M*((j<<1)+1)%M)%M*3323403%M)%M;
26     }
27     printf("%lld",(Ans+M)%M);
28     return 0;
29 }
bzoj2956

 

posted @ 2017-03-17 18:56  gjghfd  阅读(158)  评论(0编辑  收藏  举报