HDU 2196Computer(树形DP)
给你一颗边带权值的树,求树上的每一点距离其最远的一个点的距离
比较典型的题了,主要方法是进行两次DFS,第一次DFS求出每一个点距离它的子树的最远距离和次远距离,然后第二次DFS从父节点传过来另一侧的树上的距离它的最远距离进行一次比较便可得出任意点的最远距离了
之所以需要记录最远和次远是为了辨别父节点的最远距离是否是根据自己得来,如果是的话应该选择父节点的次远距离,保证结果的准确性
1 //#pragma comment(linker,"/STACK:102400000,102400000") 2 #include <map> 3 #include <set> 4 #include <stack> 5 #include <queue> 6 #include <cmath> 7 #include <ctime> 8 #include <vector> 9 #include <cstdio> 10 #include <cctype> 11 #include <cstring> 12 #include <cstdlib> 13 #include <iostream> 14 #include <algorithm> 15 using namespace std; 16 #define INF 1e8 17 #define inf (-((LL)1<<40)) 18 #define lson k<<1, L, mid 19 #define rson k<<1|1, mid+1, R 20 #define mem0(a) memset(a,0,sizeof(a)) 21 #define mem1(a) memset(a,-1,sizeof(a)) 22 #define mem(a, b) memset(a, b, sizeof(a)) 23 #define FOPENIN(IN) freopen(IN, "r", stdin) 24 #define FOPENOUT(OUT) freopen(OUT, "w", stdout) 25 template<class T> T CMP_MIN(T a, T b) { return a < b; } 26 template<class T> T CMP_MAX(T a, T b) { return a > b; } 27 template<class T> T MAX(T a, T b) { return a > b ? a : b; } 28 template<class T> T MIN(T a, T b) { return a < b ? a : b; } 29 template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; } 30 template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b; } 31 32 //typedef __int64 LL; 33 //typedef long long LL; 34 const int MAXN = 10005; 35 const int MAXM = 20005; 36 const double eps = 1e-13; 37 //const LL MOD = 1000000007; 38 39 int N; 40 int head[MAXN], next[MAXM], tot; 41 int u[MAXM], v[MAXM], w[MAXM]; 42 int fir[MAXN], sec[MAXN], ans[MAXN]; 43 44 void addEdge(int U, int V, int W) 45 { 46 u[tot] = U; 47 v[tot] = V; 48 w[tot] = W; 49 next[tot] = head[U]; 50 head[U] = tot; 51 tot ++; 52 } 53 54 int dfs1(int x, int fa) 55 { 56 fir[x] = sec[x] = 0; 57 for(int e = head[x]; e != -1; e = next[e]) if(v[e] != fa) 58 { 59 int dis = dfs1(v[e], x) + w[e]; 60 if(dis >= fir[x]) { sec[x] = fir[x]; fir[x] = dis; } 61 else if(dis > sec[x]) sec[x] = dis; 62 } 63 return fir[x]; 64 } 65 66 void dfs2(int x, int fa, int dis) 67 { 68 ans[x] = MAX(fir[x], dis); 69 for(int e = head[x]; e != -1; e = next[e]) if(v[e] != fa) 70 { 71 int y = v[e]; 72 if(fir[y] + w[e] == fir[x]) 73 dfs2(y, x, MAX( dis, sec[x]) + w[e] ); 74 else 75 dfs2(y, x, MAX( dis, fir[x]) + w[e] ); 76 } 77 } 78 79 int main() 80 { 81 82 while(~scanf("%d", &N)) 83 { 84 tot = 0; 85 mem1(head); 86 int V, W; 87 for(int i = 2; i <= N; i ++) 88 { 89 scanf("%d %d", &V, &W); 90 addEdge(i, V, W); 91 addEdge(V, i, W); 92 } 93 dfs1(1, 1); 94 dfs2(1, 1, 0); 95 for(int i = 1; i <= N; i ++ ) 96 printf("%d\n", ans[i]); 97 } 98 return 0; 99 }