POJ1050To the Max
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The
input consists of an N * N array of integers. The input begins with a
single positive integer N on a line by itself, indicating the size of
the square two-dimensional array. This is followed by N^2 integers
separated by whitespace (spaces and newlines). These are the N^2
integers of the array, presented in row-major order. That is, all
numbers in the first row, left to right, then all numbers in the second
row, left to right, etc. N may be as large as 100. The numbers in the
array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
题目的大意就是说在给出的n*n个数组成的矩形中饭找出一个小矩形,使得这些数的和最大。
这道题可以借鉴求最大和的连续子序列的方法来做;
在i,j行之间求出每一列这之间的和,那么这个和的最大连续子序列和就是所求
如样例:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
假如在第一行到第三行之间求每一列的和那就是
-13 1 -17 3
这个序列的最大连续区间的和就是举行的高为1-3行之间的最大矩形里的和
那么我们就只需要枚举所有行的区间就行了,连续区间最大和的球阀复杂度是O(n),枚举所有行是O(n^2),所以总的复杂度就是O(n^3)。n<=100所以不会超时
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <iostream> 5 #define MAX(a,b) (a) > (b)? (a):(b) 6 #define MIN(a,b) (a) < (b)? (a):(b) 7 #define mem(a) memset(a,0,sizeof(a)) 8 #define INF 1000000007 9 #define MAXN 105 10 #define MAXC 1005 11 using namespace std; 12 13 int N,ma[105][105]; 14 int sumU[105][105],sum[105]; 15 int main() 16 { 17 while(~scanf("%d",&N)) 18 { 19 mem(sumU); 20 int i,j,ans = -INF; 21 for(i=1;i<=N;i++)for(j=1;j<=N;j++) 22 { 23 scanf("%d",&ma[i][j]); 24 sumU[i][j]=sumU[i-1][j]+ma[i][j]; 25 } 26 int Top,Down; 27 for(Top=0;Top<N;Top++) 28 { 29 for(Down=Top+1;Down<=N;Down++) 30 { 31 mem(sum); 32 int min, max = -INF; 33 min = sumU[Down][1]-sumU[Top][1];//(sumU[Down][1]-sumU[Top][1])>0?0:(sumU[Down][1]-sumU[Top][1]); 34 for(i=2;i<=N;i++) 35 { 36 if(min<0)min=(sumU[Down][i]-sumU[Top][i]); 37 else min+=(sumU[Down][i]-sumU[Top][i]); 38 if(max<min)max=min; 39 } 40 ans=MAX(ans,max); 41 } 42 } 43 printf("%d\n",ans); 44 } 45 return 0; 46 }