矩阵

1. 概念

image


1)矩阵的维度--Matrix Dimension or Order

The dimension or order of a matrix is the expression m × n where m is the number of rows, and n is the number of columns.


2)方形矩阵--Square Matrix

行与列个数相等的矩阵

image


3)列矢量--Column Vector

只有一列元素的矩阵

image


4)行矢量--Row Vector

只有一行元素的矩阵

image


4)空矩阵--Null Matrix

所有元素都为0的矩阵

image


5)单位矩阵--Unit Matrix

所有主对角元素(从a00到ann)都为1,其它元素为0的矩阵

image


6)方阵的迹--Trace

所有主对角元素(从a00到ann)的和

image


1.可用于计算一点围绕原点的旋转角度

image


image



7)方阵的行列式--Determinant of a Matrix

The determinant of a matrix is a scalar value computed from the elements of the matrix

image



8)转置--Transpose

矩阵行元素与列元素进行交换形成的矩阵

image    image

性质:

image


9)对称矩阵--Symmetric Matrix

矩阵与其转置矩阵相同的矩阵,即image

image


生成一个对称矩阵

image


10)反对称矩阵--Antisymmetric Matrix/skew-symmetric matrix

转置矩阵与其负矩阵相同的矩阵,即 image

它的主对角元素全为0,其它元素为image

image


生成一个反对称矩阵

image


2. 操作

1)加减法--Matrix Addition and Subtraction

对应元素相加/减

image


2)标量相乘--Scalar Multiplication

image


3)矩阵积--Matrix Products

1.行列矢量的乘积--Row and Column Vectors

image


2.行矢量与矩阵的乘积--Row Vector and a Matrix

image


3.矩阵与列矢量的乘积--Matrix and a Column Vector

image


4.方阵乘积--Square Matrices

image


5.矩形矩阵的乘积--Rectangular Matrices

image


4)逆矩阵--Inverse Matrix

满足 image条件,且image唯一


当一个方阵的行列式的值为0时,它没有逆矩阵,它被称为奇异矩阵(singular matrix)


image



image


5)求一对矩阵的逆--Inverting a Pair of Matrices

image

image


6)正交矩阵--Orthogonal Matrix

A matrix is orthogonal if its transpose is also its inverse,即 image

例如:

image

正交矩阵的作用:Orthogonal matrices play an important role in rotations because they leave the origin fixed and preserve all angles and distances. Consequently, an object’s geometric integrity is maintained after a rotation, which is why an orthogonal transform is known as a rigid motion transform(刚体运动变换)


6)对角矩阵--Diagonal Matrix

除主对角上的元素外,其它元素全为0的矩阵

image




posted @ 2022-05-11 11:28  ParamousGIS  阅读(1046)  评论(0编辑  收藏  举报