python pyecharts 用Python制作疫情的实时数据地图(PS:全国以及每个省(转)
来自:https://blog.csdn.net/shineych/article/details/104231072?utm_source=distribute.pc_category.none-task
from pyquery import PyQuery as pq from bs4 import BeautifulSoup import datetime import numpy as np import re import requests import time, json, requests import jsonpath from pyecharts.charts import Map import pyecharts.options as opts #%% shenname="浙江" # 全国疫情地区分布(各省确诊病例) def catch_cn_disease_dis(): timestamp = '%d'%int(time.time()*1000) url_area = ('https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' '&callback=&_=') + timestamp world_data = json.loads(requests.get(url=url_area).json()['data']) china_data = jsonpath.jsonpath(world_data, expr='$.areaTree[0].children[*]') ls_province_names = jsonpath.jsonpath(china_data, expr='$[*].name') ls_confirm_vals = jsonpath.jsonpath(china_data, expr='$[*].total.confirm') ls_province_confirm = list(zip(ls_province_names, ls_confirm_vals,)) return ls_province_confirm, world_data #%% ls_province_cfm, dic_world_data = catch_cn_disease_dis() print(ls_province_cfm) #%% # 绘制全国疫情地图 def map_cn_disease_dis() -> Map: c = ( Map() .add('中国', ls_province_cfm, 'china') .set_global_opts( title_opts=opts.TitleOpts(title='全国新型冠状病毒疫情地图(确诊数)'), visualmap_opts=opts.VisualMapOpts(is_show=True, split_number=7, is_piecewise=True, # 是否为分段型 pos_top='center', pieces=[ {'min': 50000, 'color': '#7f1818'}, #不指定 max {'min': 2000, 'max': 4999}, {'min': 1000, 'max': 1999}, {'min': 500, 'max': 999}, {'min': 100, 'max': 499}, {'min': 10, 'max': 99}, {'min': 0, 'max': 9} ], ), ) ) return c # 获取河南省确诊分布数据 def catch_fj_disease_dis(): dic_world_data = catch_cn_disease_dis()[1] dic_fj_cfm = dict() # 解析河南各个城市的数据 dic_fj = jsonpath.jsonpath(dic_world_data, expr='$.areaTree[0].children[?(@.name=="'+shenname+'")].children[*]') for item in dic_fj: if item['name'] not in dic_fj_cfm: dic_fj_cfm.update({item['name']: 0}) dic_fj_cfm[item['name']] += int(item['total']['confirm']) return dic_fj_cfm dic_fj_cfm = catch_fj_disease_dis() # %% # 绘制河南省疫情地图 def map_fj_disease_dis() -> Map: # dic_fj_cfm = catch_fj_disease_dis ls_fj_cities = [name + '市' for name in dic_fj_cfm.keys()] c = ( Map() .add(shenname, [list(z) for z in zip(ls_fj_cities, dic_fj_cfm.values())], shenname) .set_series_opts(label_opts=opts.LabelOpts(is_show=True, formatter='{b}\n{c}例')) .set_global_opts( title_opts=opts.TitleOpts(title=shenname+'新型冠状病毒疫情地图(确诊数)'), visualmap_opts=opts.VisualMapOpts(is_show=True, split_number=5, is_piecewise=True, # 是否为分段型 pos_top='center', pieces=[ {'min': 100}, {'min': 50, 'max': 100}, {'min': 20, 'max': 49}, {'min': 10, 'max': 19}, {'min': 1, 'max': 9}, {'value': 0, "label": '无确诊病例', "color": 'green'}], ), ) ) return c map_fj_disease_dis().render(shenname+'疫情地图.html') map_cn_disease_dis().render("全国疫情地图.html")
=========================修改=============
from pyquery import PyQuery as pq from bs4 import BeautifulSoup import datetime import numpy as np import re import requests import time, json, requests import jsonpath from pyecharts.charts import Map import pyecharts.options as opts #%% shenname="湖北" # 全国疫情地区分布(各省确诊病例) def catch_cn_disease_dis(): timestamp = '%d'%int(time.time()*1000) url_area = ('https://view.inews.qq.com/g2/getOnsInfo?name=disease_h5' '&callback=&_=') + timestamp world_data = json.loads(requests.get(url=url_area).json()['data']) china_data = jsonpath.jsonpath(world_data, expr='$.areaTree[0].children[*]') ls_province_names = jsonpath.jsonpath(china_data, expr='$[*].name') ls_confirm_vals = jsonpath.jsonpath(china_data, expr='$[*].total.confirm') ls_province_confirm = list(zip(ls_province_names, ls_confirm_vals,)) return ls_province_confirm, world_data #%% ls_province_cfm, dic_world_data = catch_cn_disease_dis() print(ls_province_cfm) #%% # 绘制全国疫情地图 def map_cn_disease_dis() -> Map: c = ( Map() .add('中国', ls_province_cfm, 'china') .set_global_opts( title_opts=opts.TitleOpts(title='全国新型冠状病毒疫情地图(确诊数)'), visualmap_opts=opts.VisualMapOpts(is_show=True, split_number=7, is_piecewise=True, # 是否为分段型 pos_top='center', pieces=[ {'min': 50000, 'color': '#7f1818'}, #不指定 max {'min': 2000, 'max': 4999}, {'min': 1000, 'max': 1999}, {'min': 500, 'max': 999}, {'min': 100, 'max': 499}, {'min': 10, 'max': 99}, {'min': 0, 'max': 9} ], ), ) ) return c # 获取河南省确诊分布数据 def catch_fj_disease_dis(): dic_world_data = catch_cn_disease_dis()[1] dic_fj_cfm = dict() # 解析河南各个城市的数据 dic_fj = jsonpath.jsonpath(dic_world_data, expr='$.areaTree[0].children[?(@.name=="'+shenname+'")].children[*]') for item in dic_fj: if item['name'] not in dic_fj_cfm: dic_fj_cfm.update({item['name']: 0}) dic_fj_cfm[item['name']] += int(item['total']['confirm']) return dic_fj_cfm dic_fj_cfm = catch_fj_disease_dis() # %% # 绘制河南省疫情地图 def map_fj_disease_dis() -> Map: # dic_fj_cfm = catch_fj_disease_dis ls_fj_cities = [name + '市' for name in dic_fj_cfm.keys()] c = ( Map() .add(shenname, [list(z) for z in zip(ls_fj_cities, dic_fj_cfm.values())], shenname) .set_series_opts(label_opts=opts.LabelOpts(is_show=True, formatter='{b}\n{c}例')) .set_global_opts( title_opts=opts.TitleOpts(title=shenname+'新型冠状病毒疫情地图(确诊数)'), visualmap_opts=opts.VisualMapOpts(is_show=True, split_number=7, is_piecewise=True, # 是否为分段型 pos_top='center', pieces=[ {'min': 5000}, {'min': 1000, 'max': 4999}, {'min': 100, 'max': 999}, {'min': 50, 'max': 99}, {'min': 20, 'max': 49}, {'min': 10, 'max': 19}, {'min': 1, 'max': 9}, {'value': 0, "label": '无确诊病例', "color": 'green'}], ), ) ) return c map_fj_disease_dis().render(shenname+'疫情地图.html') map_cn_disease_dis().render("全国疫情地图.html")
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
2017-02-10 Andriod for arcgis 字段属性