python gaussian,gaussian2
import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.axisartist as axisartist from mpl_toolkits.mplot3d import Axes3D #画三维图不可少 from matplotlib import cm #cm 是colormap的简写 #定义坐标轴函数 def setup_axes(fig, rect): ax = axisartist.Subplot(fig, rect) fig.add_axes(ax) ax.set_ylim(-4, 4) #自定义刻度 # ax.set_yticks([-10, 0,9]) ax.set_xlim(-4,4) ax.axis[:].set_visible(False) #第2条线,即y轴,经过x=0的点 ax.axis["y"] = ax.new_floating_axis(1, 0) ax.axis["y"].set_axisline_style("-|>", size=1.5) # 第一条线,x轴,经过y=0的点 ax.axis["x"] = ax.new_floating_axis(0, 0) ax.axis["x"].set_axisline_style("-|>", size=1.5) return(ax) # 1_dimension gaussian function def gaussian(x,mu,sigma): f_x = 1/(sigma*np.sqrt(2*np.pi))*np.exp(-np.power(x-mu, 2.)/(2*np.power(sigma,2.))) return(f_x) # 2_dimension gaussian function def gaussian_2(x,y,mu_x,mu_y,sigma_x,sigma_y): f_x_y = 1/(sigma_x*sigma_y*(np.sqrt(2*np.pi))**2)*np.exp(-np.power\ (x-mu_x, 2.)/(2*np.power(sigma_x,2.))-np.power(y-mu_y, 2.)/\ (2*np.power(sigma_y,2.))) return(f_x_y) #设置画布 # fig = plt.figure(figsize=(8, 8)) #建议可以直接plt.figure()不定义大小 # ax1 = setup_axes(fig, 111) # ax1.axis["x"].set_axis_direction("bottom") # ax1.axis['y'].set_axis_direction('right') # #在已经定义好的画布上加入高斯函数 x_values = np.linspace(-5,5,2000) y_values = np.linspace(-5,5,2000) X,Y = np.meshgrid(x_values,y_values) mu_x,mu_y,sigma_x,sigma_y = 0,0,0.8,0.8 #F_x_y = gaussian_2(X,Y,mu_x,mu_y,sigma_x,sigma_y) F_x_y = gaussian(X,mu_x,sigma_x) #显示2d等高线图,画100条线 # plt.contour(X,Y,F_x_y,100) # fig.show() #显示三维图 fig = plt.figure() ax = plt.gca(projection='3d') ax.plot_surface(X,Y,F_x_y,cmap='jet') #显示3d等高线图 ax.contour3D(X,Y,F_x_y,50,cmap='jet') fig.show()
=======================二维========================
import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.axisartist as axisartist from mpl_toolkits.mplot3d import Axes3D #画三维图不可少 from matplotlib import cm #cm 是colormap的简写 #定义坐标轴函数 def setup_axes(fig, rect): ax = axisartist.Subplot(fig, rect) fig.add_axes(ax) ax.set_ylim(-4, 4) #自定义刻度 # ax.set_yticks([-10, 0,9]) ax.set_xlim(-4,4) ax.axis[:].set_visible(False) #第2条线,即y轴,经过x=0的点 ax.axis["y"] = ax.new_floating_axis(1, 0) ax.axis["y"].set_axisline_style("-|>", size=1.5) # 第一条线,x轴,经过y=0的点 ax.axis["x"] = ax.new_floating_axis(0, 0) ax.axis["x"].set_axisline_style("-|>", size=1.5) return(ax) # 1_dimension gaussian function def gaussian(x,mu,sigma): f_x = 1/(sigma*np.sqrt(2*np.pi))*np.exp(-np.power(x-mu, 2.)/(2*np.power(sigma,2.))) return(f_x) # 2_dimension gaussian function def gaussian_2(x,y,mu_x,mu_y,sigma_x,sigma_y): f_x_y = 1/(sigma_x*sigma_y*(np.sqrt(2*np.pi))**2)*np.exp(-np.power\ (x-mu_x, 2.)/(2*np.power(sigma_x,2.))-np.power(y-mu_y, 2.)/\ (2*np.power(sigma_y,2.))) return(f_x_y) #设置画布 fig = plt.figure(figsize=(8, 8)) #建议可以直接plt.figure()不定义大小 ax1 = setup_axes(fig, 111) ax1.axis["x"].set_axis_direction("bottom") ax1.axis['y'].set_axis_direction('right') # #在已经定义好的画布上加入高斯函数 x_values = np.linspace(-5,5,2000) y_values = np.linspace(-5,5,2000) X,Y = np.meshgrid(x_values,y_values) mu_x,mu_y,sigma_x,sigma_y = 0,0,0.8,0.8 F_x_y = gaussian_2(X,Y,mu_x,mu_y,sigma_x,sigma_y) #F_x_y = gaussian(X,mu_x,sigma_x) #显示2d等高线图,画100条线 plt.contour(X,Y,F_x_y,100) fig.show()
圆形
矩形:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.axisartist as axisartist from mpl_toolkits.mplot3d import Axes3D #画三维图不可少 from matplotlib import cm #cm 是colormap的简写 #定义坐标轴函数 def setup_axes(fig, rect): ax = axisartist.Subplot(fig, rect) fig.add_axes(ax) ax.set_ylim( - 4 , 4 ) #自定义刻度 # ax.set_yticks([-10, 0,9]) ax.set_xlim( - 4 , 4 ) ax.axis[:].set_visible( False ) #第2条线,即y轴,经过x=0的点 ax.axis[ "y" ] = ax.new_floating_axis( 1 , 0 ) ax.axis[ "y" ].set_axisline_style( "-|>" , size = 1.5 ) # 第一条线,x轴,经过y=0的点 ax.axis[ "x" ] = ax.new_floating_axis( 0 , 0 ) ax.axis[ "x" ].set_axisline_style( "-|>" , size = 1.5 ) return (ax) # 1_dimension gaussian function def gaussian(x,mu,sigma): f_x = 1 / (sigma * np.sqrt( 2 * np.pi)) * np.exp( - np.power(x - mu, 2. ) / ( 2 * np.power(sigma, 2. ))) return (f_x) # 2_dimension gaussian function def gaussian_2(x,y,mu_x,mu_y,sigma_x,sigma_y): f_x_y = 1 / (sigma_x * sigma_y * (np.sqrt( 2 * np.pi)) * * 2 ) * np.exp( - np.power\ (x - mu_x, 2. ) / ( 2 * np.power(sigma_x, 2. )) - np.power(y - mu_y, 2. ) / \ ( 2 * np.power(sigma_y, 2. ))) return (f_x_y) #设置画布 fig = plt.figure(figsize = ( 8 , 8 )) #建议可以直接plt.figure()不定义大小 ax1 = setup_axes(fig, 111 ) ax1.axis[ "x" ].set_axis_direction( "bottom" ) ax1.axis[ 'y' ].set_axis_direction( 'right' ) # #在已经定义好的画布上加入高斯函数 x_values = np.linspace( - 5 , 5 , 2000 ) y_values = np.linspace( - 5 , 5 , 2000 ) X,Y = np.meshgrid(x_values,y_values) mu_x,mu_y,sigma_x,sigma_y = 0 , 0 , 0.8 , 0.8 #F_x_y = gaussian_2(X,Y,mu_x,mu_y,sigma_x,sigma_y) F_x_y = gaussian(X,mu_x,sigma_x) #显示2d等高线图,画100条线 plt.contour(X,Y,F_x_y, 100 ) fig.show() |
球
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.add_subplot(111, projection='3d') u = np.linspace(0, 2 * np.pi, 100) v = np.linspace(0, np.pi, 100) x = 10 * np.outer(np.cos(u), np.sin(v)) y = 10 * np.outer(np.sin(u), np.sin(v)) z = 10 * np.outer(np.ones(np.size(u)), np.cos(v)) ax.plot_surface(x, y, z, rstride=4, cstride=4, color='b') plt.show()
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
2010-12-22 ArcGIS Engine栅格数据使用总结