腾讯街景数据爬虫
目前腾讯为大家提供了海量的街景数据,并对其服务接口做出了详细的说明(https://lbs.qq.com/uri_v1/guide-showPano.html)。
需要注意的是这里的referer需改为key,至于后边key对应的值需自己注册自己应用的key值。地址:https://lbs.qq.com/dev/console/key/manage
请求连接:
浏览器请求结果:
直接输入连接则会失败,需设置请求头。
失败效果图:
成功效果图:(设置Referer)
Python源代码
说明:
本次实验主要需对武汉、北京等地区的街景数据爬虫,采用的核心方法如下:
- 采用市区最小外包矩形坐标限定拾取街景范围;
- 坐标采用wgs84转高德火星坐标的方式,坐标千分位依次递增1的方式逐点查询街景图片ID;
- 根据街景ID获取图片并保存;
本文并未进行断点续爬以及相同街景去重操作,后续将完善;
腾讯该接口并不稳定,维护时间距今较长,服务调用不易成功不建议使用该服务;
# coding=utf-8 import math import requests import urllib from urllib.request import urlopen import threading from optparse import OptionParser import cv2 try: import urlparse except ImportError: import urllib.parse as urlparse import numpy as np #发送请求保存照片 def download(url, name): # url='https://apis.map.qq.com/ws/streetview/v1/image?size=640x480&pano=10141031130101141134000&heading=0&pitch=0&key=K76BZ-W3O2Q-RFL5S-GXOPR-3ARIT-6KFE5' # 将user_agent,referer写入头信息 headers={'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36','Referer':'https://lbs.qq.com/tool/streetview/streetview.html'} images = requests.get(url, headers=headers) img = images.content if images.status_code == 200: print('图片: %s%s 正在下载..' % ('张飒','xin')) with open(name,'wb') as fp: fp.write(img) # wgs84转高德 def wgs84togcj02(lng, lat): PI = 3.1415926535897932384626 ee = 0.00669342162296594323 a = 6378245.0 dlat = transformlat(lng - 105.0, lat - 35.0) dlng = transformlng(lng - 105.0, lat - 35.0) radlat = lat / 180.0 * PI magic = math.sin(radlat) magic = 1 - ee * magic * magic sqrtmagic = math.sqrt(magic) dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrtmagic) * PI) dlng = (dlng * 180.0) / (a / sqrtmagic * math.cos(radlat) * PI) mglat = lat + dlat mglng = lng + dlng return [mglng, mglat] # GCJ02/谷歌、高德 转换为 WGS84 gcj02towgs84 def gcj02towgs84(localStr): lng = float(localStr.split(',')[0]) lat = float(localStr.split(',')[1]) PI = 3.1415926535897932384626 ee = 0.00669342162296594323 a = 6378245.0 dlat = transformlat(lng - 105.0, lat - 35.0) dlng = transformlng(lng - 105.0, lat - 35.0) radlat = lat / 180.0 * PI magic = math.sin(radlat) magic = 1 - ee * magic * magic sqrtmagic = math.sqrt(magic) dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrtmagic) * PI) dlng = (dlng * 180.0) / (a / sqrtmagic * math.cos(radlat) * PI) mglat = lat + dlat mglng = lng + dlng return str(lng * 2 - mglng) + ',' + str(lat * 2 - mglat) def transformlat(lng, lat): PI = 3.1415926535897932384626 ret = -100.0 + 2.0 * lng + 3.0 * lat + 0.2 * lat * \ lat + 0.1 * lng * lat + 0.2 * math.sqrt(abs(lng)) ret += (20.0 * math.sin(6.0 * lng * PI) + 20.0 * math.sin(2.0 * lng * PI)) * 2.0 / 3.0 ret += (20.0 * math.sin(lat * PI) + 40.0 * math.sin(lat / 3.0 * PI)) * 2.0 / 3.0 ret += (160.0 * math.sin(lat / 12.0 * PI) + 320 * math.sin(lat * PI / 30.0)) * 2.0 / 3.0 return ret def transformlng(lng, lat): PI = 3.1415926535897932384626 ret = 300.0 + lng + 2.0 * lat + 0.1 * lng * lng + \ 0.1 * lng * lat + 0.1 * math.sqrt(abs(lng)) ret += (20.0 * math.sin(6.0 * lng * PI) + 20.0 * math.sin(2.0 * lng * PI)) * 2.0 / 3.0 ret += (20.0 * math.sin(lng * PI) + 40.0 * math.sin(lng / 3.0 * PI)) * 2.0 / 3.0 ret += (150.0 * math.sin(lng / 12.0 * PI) + 300.0 * math.sin(lng / 30.0 * PI)) * 2.0 / 3.0 return ret #获取经纬坐标 def getPoint(_points): point = _points.split(',') point_jin = point[0] point_wei = point[1] transOpints=wgs84togcj02(float(point_jin),float(point_wei)) return transOpints # 输入左下以及右上角坐标 根据两点形成等差坐标组 进而获取图片 def getImage(start_point,end_point,cityName): # 取得起始坐标 start_point_jin = start_point[0] start_point_wei = start_point[1] end_point_jin = end_point[0] end_point_wei = end_point[1] #创建等差数组 jins = np.arange(float(start_point_jin)*1000, float(end_point_jin)*1000, 1)*0.001 jins_num = len(jins) weis = np.linspace(float(start_point_wei)*1000, float(end_point_wei)*1000, jins_num)*0.001 weis_num = len(weis) for jins_i in range(jins_num): jin = jins[jins_i] for weis_i in range(weis_num): wei = weis[weis_i] #这里要注意下,对应的经纬度没有街景图的地方,输出的会是无效图片 print(jin, wei) img_name = "E:\\dataTest\\streetImgData\\"+cityName+"\\" + str(wei) + "_" + str(jin) +".jpg" url = "https://apis.map.qq.com/ws/streetview/v1/image?size=600x480&location="+str(wei)+","+str(jin)+"&pitch=0&heading=0&key=E2BBZ-AEB6U-ONRVX-4PBS3-CZIHK-A7FJI" outimg = download(url, img_name) #定义数据字典 根据起始点坐标推算内容坐标 cityJinweiArr=[{"start":"115.442845,39.464988","end":"117.498766,40.978318","city":"beiJing"},{"start":"112.681398,34.269097","end":"114.226897,34.958295","city":"zhengZhou"},{"start":"113.692462,29.971956","end":"115.082138,31.362241","city":"wuHan"}] for city in cityJinweiArr: start_point=getPoint(city['start']) end_point=getPoint(city['end']) cityName=city['city'] getImage(start_point,end_point,cityName)