redis-quicklist

有了ziplist, 为什么还需要quicklist? 这不是逻辑搞复杂了么, 但比单纯用ziplist, 性能提高显著.

因为quicklist是由多个ziplist组成的双链表,每个ziplist可看成1个结点.

quicklist数据结构:

/* quicklist is a 32 byte struct (on 64-bit systems) describing a quicklist.
 * 'count' is the number of total entries.
 * 'len' is the number of quicklist nodes.
 * 'compress' is: -1 if compression disabled, otherwise it's the number
 *                of quicklistNodes to leave uncompressed at ends of quicklist.
 * 'fill' is the user-requested (or default) fill factor. */
typedef struct quicklist {
    quicklistNode *head;        //头结点
    quicklistNode *tail;        //尾结点
    unsigned long count;        /* total count of all entries in all ziplists */        //元素总数 (所有ziplist结点的内部元素数总和)
    unsigned int len;           /* number of quicklistNodes */                          //结点数   (ziplist结点个数)
    int fill : 16;              /* fill factor for individual nodes */
    unsigned int compress : 16; /* depth of end nodes not to compress;0=off */
} quicklist;

结点数据结构:

/* quicklistNode is a 32 byte struct describing a ziplist for a quicklist.
 * We use bit fields keep the quicklistNode at 32 bytes.
 * count: 16 bits, max 65536 (max zl bytes is 65k, so max count actually < 32k).
 * encoding: 2 bits, RAW=1, LZF=2.
 * container: 2 bits, NONE=1, ZIPLIST=2.
 * recompress: 1 bit, bool, true if node is temporarry decompressed for usage.
 * attempted_compress: 1 bit, boolean, used for verifying during testing.
 * extra: 12 bits, free for future use; pads out the remainder of 32 bits */
typedef struct quicklistNode {
    struct quicklistNode *prev;
    struct quicklistNode *next;
    unsigned char *zl;           //ziplist指针
    unsigned int sz;             /* ziplist size in bytes */
    unsigned int count : 16;     /* count of items in ziplist */
    unsigned int encoding : 2;   /* RAW==1 or LZF==2 */
    unsigned int container : 2;  /* NONE==1 or ZIPLIST==2 */
    unsigned int recompress : 1; /* was this node previous compressed? */
    unsigned int attempted_compress : 1; /* node can't compress; too small */
    unsigned int extra : 10; /* more bits to steal for future usage */
} quicklistNode;

每个结点可压缩,有效减少quicklist存储大小,压缩还搞不懂,略!

查询:
时间复杂度: O(n) + O(m)         //n=结点数, m=结点内部的元素数

/* Populate 'entry' with the element at the specified zero-based index
 * where 0 is the head, 1 is the element next to head
 * and so on. Negative integers are used in order to count
 * from the tail, -1 is the last element, -2 the penultimate
 * and so on. If the index is out of range 0 is returned.
 *
 * Returns 1 if element found
 * Returns 0 if element not found */
int quicklistIndex(const quicklist *quicklist, const long long idx,
                   quicklistEntry *entry) {
    quicklistNode *n;
    unsigned long long accum = 0;
    unsigned long long index;
    int forward = idx < 0 ? 0 : 1; /* < 0 -> reverse, 0+ -> forward */

    initEntry(entry);
    entry->quicklist = quicklist;

    if (!forward) {
        index = (-idx) - 1;
        n = quicklist->tail;                    //从尾结点倒序查找
    } else {
        index = idx;
        n = quicklist->head;                    //从头结点正序查找
    }

    if (index >= quicklist->count)
        return 0;

    while (likely(n)) {                         //循环每个结点,判断查询索引落在哪个结点里
        if ((accum + n->count) > index) {
            break;
        } else {
            D("Skipping over (%p) %u at accum %lld", (void *)n, n->count,
              accum);
            accum += n->count;
            n = forward ? n->next : n->prev;
        }
    }

    if (!n)
        return 0;

    D("Found node: %p at accum %llu, idx %llu, sub+ %llu, sub- %llu", (void *)n,
      accum, index, index - accum, (-index) - 1 + accum);

    entry->node = n;
    if (forward) {
        /* forward = normal head-to-tail offset. */
        entry->offset = index - accum;          //结点内部偏移量
    } else {
        /* reverse = need negative offset for tail-to-head, so undo
         * the result of the original if (index < 0) above. */
        entry->offset = (-index) - 1 + accum;
    }

    quicklistDecompressNodeForUse(entry->node);
    entry->zi = ziplistIndex(entry->node->zl, entry->offset);           //查询索引对应的ziplist内部某个指针
    ziplistGet(entry->zi, &entry->value, &entry->sz, &entry->longval);  //获取索引对应的数据
    /* The caller will use our result, so we don't re-compress here.
     * The caller can recompress or delete the node as needed. */
    return 1;
}

 

使用场景
可用于list类型, 满足任意数量元素的队列, 随着量变大,性能基本平稳。
t_list.c

void lrangeCommand(client *c) {
    robj *o;
    long start, end, llen, rangelen;

    if ((getLongFromObjectOrReply(c, c->argv[2], &start, NULL) != C_OK) ||
        (getLongFromObjectOrReply(c, c->argv[3], &end, NULL) != C_OK)) return;

    if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.emptymultibulk)) == NULL
         || checkType(c,o,OBJ_LIST)) return;
    llen = listTypeLength(o);

    /* convert negative indexes */
    if (start < 0) start = llen+start;
    if (end < 0) end = llen+end;
    if (start < 0) start = 0;

    /* Invariant: start >= 0, so this test will be true when end < 0.
     * The range is empty when start > end or start >= length. */
    if (start > end || start >= llen) {
        addReply(c,shared.emptymultibulk);
        return;
    }
    if (end >= llen) end = llen-1;
    rangelen = (end-start)+1;

    /* Return the result in form of a multi-bulk reply */
    addReplyMultiBulkLen(c,rangelen);
    if (o->encoding == OBJ_ENCODING_QUICKLIST) {
        listTypeIterator *iter = listTypeInitIterator(o, start, LIST_TAIL);//找到索引对应的遍历对象, 内部调用方法: quicklistIndex()

        while(rangelen--) {                                          //查询的元素数量
            listTypeEntry entry;
            listTypeNext(iter, &entry);                              //第一次查找第一个元素, 后面查找下一个元素
            quicklistEntry *qe = &entry.entry;
            if (qe->value) {                                         //元素对应的数据
                addReplyBulkCBuffer(c,qe->value,qe->sz);
            } else {
                addReplyBulkLongLong(c,qe->longval);
            }
        }
        listTypeReleaseIterator(iter);
    } else {
        serverPanic("List encoding is not QUICKLIST!");
    }
}

/* Stores pointer to current the entry in the provided entry structure
 * and advances the position of the iterator. Returns 1 when the current
 * entry is in fact an entry, 0 otherwise. */
int listTypeNext(listTypeIterator *li, listTypeEntry *entry) {
    /* Protect from converting when iterating */
    serverAssert(li->subject->encoding == li->encoding);

    entry->li = li;
    if (li->encoding == OBJ_ENCODING_QUICKLIST) {
        return quicklistNext(li->iter, &entry->entry);
    } else {
        serverPanic("Unknown list encoding");
    }
    return 0;
}

quicklist.c

/* Get next element in iterator.
 *
 * Note: You must NOT insert into the list while iterating over it.
 * You *may* delete from the list while iterating using the
 * quicklistDelEntry() function.
 * If you insert into the quicklist while iterating, you should
 * re-create the iterator after your addition.
 *
 * iter = quicklistGetIterator(quicklist,<direction>);
 * quicklistEntry entry;
 * while (quicklistNext(iter, &entry)) {
 *     if (entry.value)
 *          [[ use entry.value with entry.sz ]]
 *     else
 *          [[ use entry.longval ]]
 * }
 *
 * Populates 'entry' with values for this iteration.
 * Returns 0 when iteration is complete or if iteration not possible.
 * If return value is 0, the contents of 'entry' are not valid.
 */
int quicklistNext(quicklistIter *iter, quicklistEntry *entry) {
    initEntry(entry);

    if (!iter) {
        D("Returning because no iter!");
        return 0;
    }

    entry->quicklist = iter->quicklist;
    entry->node = iter->current;

    if (!iter->current) {
        D("Returning because current node is NULL")
        return 0;
    }

    unsigned char *(*nextFn)(unsigned char *, unsigned char *) = NULL;
    int offset_update = 0;

    if (!iter->zi) {                                                  //第一次查询
        /* If !zi, use current index. */
        quicklistDecompressNodeForUse(iter->current);
        iter->zi = ziplistIndex(iter->current->zl, iter->offset);     //第一个元素对应的指针
    } else {
        /* else, use existing iterator offset and get prev/next as necessary. */
        if (iter->direction == AL_START_HEAD) {
            nextFn = ziplistNext;
            offset_update = 1;
        } else if (iter->direction == AL_START_TAIL) {
            nextFn = ziplistPrev;
            offset_update = -1;
        }
        iter->zi = nextFn(iter->current->zl, iter->zi);               //ziplist内部下一个元素
        iter->offset += offset_update;
    }

    entry->zi = iter->zi;
    entry->offset = iter->offset;

    if (iter->zi) {                                                  //找到元素, 获取元素数据内容
        /* Populate value from existing ziplist position */
        ziplistGet(entry->zi, &entry->value, &entry->sz, &entry->longval);
        return 1;
    } else {                                                         //当前结点没有找到元素, 则跳到一个结点查询
        /* We ran out of ziplist entries.
         * Pick next node, update offset, then re-run retrieval. */
        quicklistCompress(iter->quicklist, iter->current);
        if (iter->direction == AL_START_HEAD) {
            /* Forward traversal */
            D("Jumping to start of next node");
            iter->current = iter->current->next;
            iter->offset = 0;
        } else if (iter->direction == AL_START_TAIL) {
            /* Reverse traversal */
            D("Jumping to end of previous node");
            iter->current = iter->current->prev;
            iter->offset = -1;
        }
        iter->zi = NULL;
        return quicklistNext(iter, entry);
    }
}


............................

posted @ 2018-04-27 19:08  小夜天  阅读(359)  评论(0编辑  收藏  举报