操作系统educative版本-笔记1
Qustions
-
How can we summarize a Process?
At any instant in time, we can summarize a process by taking an inventory of the different pieces of the system it accesses or affects during the course of its execution.
-
Tell me about the elements that constitute a Process?
- Memory:Instructions lie in memory and the data that a programme reads or writes sits in memory too.
- Registers:During the execution of a program , instuctions reads or writes some registers.
- PC(Program Counter) tells us which instructions of the program will be execute next.
- Stack Pointer and Frame Pointer are used to manage the stack for function parameters,local variables and return addresses.
- Persistence Storage Device:the I/O imformation might include a list of files the program currently open.
-
Do you know some primary APIs of Process that are available in any operating system?
- Create
- Destory:kill the process forcefully
- Wait: wait to stop the process
- Suspend/Resume
- Status
-
The snippet below shows the data structure of Process and the define of process states , it also shows the register context which is useful for schduling the Process.
// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {
int eip;
int esp;
int ebx;
int ecx;
int edx;
int esi;
int edi;
int ebp;
};
// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };
// the information xv6 tracks about each process
// including its register context and state
struct proc {
char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack
// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If !zero, sleeping on chan
int killed; // If !zero, has been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the
// current interrupt
};
Exercise
Here is the code provided by the course,we can use diffrent options to generate some processes and caculate the cpu and io utilazition,for example,we can use '-l 5:100 5:100' to generate two processes, each of which has 5 instructions use CPU only.
#! /usr/bin/env python
import sys
from optparse import OptionParser
import random
# process switch behavior
SCHED_SWITCH_ON_IO = 'SWITCH_ON_IO'
SCHED_SWITCH_ON_END = 'SWITCH_ON_END'
# io finished behavior
IO_RUN_LATER = 'IO_RUN_LATER'
IO_RUN_IMMEDIATE = 'IO_RUN_IMMEDIATE'
# process states
STATE_RUNNING = 'RUNNING'
STATE_READY = 'READY'
STATE_DONE = 'DONE'
STATE_WAIT = 'WAITING'
# members of process structure
PROC_CODE = 'code_'
PROC_PC = 'pc_'
PROC_ID = 'pid_'
PROC_STATE = 'proc_state_'
# things a process can do
DO_COMPUTE = 'cpu'
DO_IO = 'io'
class scheduler:
def __init__(self, process_switch_behavior, io_done_behavior, io_length):
# keep set of instructions for each of the processes
self.proc_info = {}
self.process_switch_behavior = process_switch_behavior
self.io_done_behavior = io_done_behavior
self.io_length = io_length
return
def new_process(self):
proc_id = len(self.proc_info)
self.proc_info[proc_id] = {}
self.proc_info[proc_id][PROC_PC] = 0
self.proc_info[proc_id][PROC_ID] = proc_id
self.proc_info[proc_id][PROC_CODE] = []
self.proc_info[proc_id][PROC_STATE] = STATE_READY
return proc_id
def load_file(self, progfile):
fd = open(progfile)
proc_id = self.new_process()
for line in fd:
tmp = line.split()
if len(tmp) == 0:
continue
opcode = tmp[0]
if opcode == 'compute':
assert(len(tmp) == 2)
for i in range(int(tmp[1])):
self.proc_info[proc_id][PROC_CODE].append(DO_COMPUTE)
elif opcode == 'io':
assert(len(tmp) == 1)
self.proc_info[proc_id][PROC_CODE].append(DO_IO)
fd.close()
return
def load(self, program_description):
proc_id = self.new_process()
tmp = program_description.split(':')
if len(tmp) != 2:
print 'Bad description (%s): Must be number <x:y>' % program_description
print ' where X is the number of instructions'
print ' and Y is the percent change that an instruction is CPU not IO'
exit(1)
num_instructions, chance_cpu = int(tmp[0]), float(tmp[1])/100.0
for i in range(num_instructions):
if random.random() < chance_cpu:
self.proc_info[proc_id][PROC_CODE].append(DO_COMPUTE)
else:
self.proc_info[proc_id][PROC_CODE].append(DO_IO)
return
def move_to_ready(self, expected, pid=-1):
if pid == -1:
pid = self.curr_proc
assert(self.proc_info[pid][PROC_STATE] == expected)
self.proc_info[pid][PROC_STATE] = STATE_READY
return
def move_to_wait(self, expected):
assert(self.proc_info[self.curr_proc][PROC_STATE] == expected)
self.proc_info[self.curr_proc][PROC_STATE] = STATE_WAIT
return
def move_to_running(self, expected):
assert(self.proc_info[self.curr_proc][PROC_STATE] == expected)
self.proc_info[self.curr_proc][PROC_STATE] = STATE_RUNNING
return
def move_to_done(self, expected):
assert(self.proc_info[self.curr_proc][PROC_STATE] == expected)
self.proc_info[self.curr_proc][PROC_STATE] = STATE_DONE
return
def next_proc(self, pid=-1):
if pid != -1:
self.curr_proc = pid
self.move_to_running(STATE_READY)
return
for pid in range(self.curr_proc + 1, len(self.proc_info)):
if self.proc_info[pid][PROC_STATE] == STATE_READY:
self.curr_proc = pid
self.move_to_running(STATE_READY)
return
for pid in range(0, self.curr_proc + 1):
if self.proc_info[pid][PROC_STATE] == STATE_READY:
self.curr_proc = pid
self.move_to_running(STATE_READY)
return
return
def get_num_processes(self):
return len(self.proc_info)
def get_num_instructions(self, pid):
return len(self.proc_info[pid][PROC_CODE])
def get_instruction(self, pid, index):
return self.proc_info[pid][PROC_CODE][index]
def get_num_active(self):
num_active = 0
for pid in range(len(self.proc_info)):
if self.proc_info[pid][PROC_STATE] != STATE_DONE:
num_active += 1
return num_active
def get_num_runnable(self):
num_active = 0
for pid in range(len(self.proc_info)):
if self.proc_info[pid][PROC_STATE] == STATE_READY or \
self.proc_info[pid][PROC_STATE] == STATE_RUNNING:
num_active += 1
return num_active
def get_ios_in_flight(self, current_time):
num_in_flight = 0
for pid in range(len(self.proc_info)):
for t in self.io_finish_times[pid]:
if t > current_time:
num_in_flight += 1
return num_in_flight
def check_for_switch(self):
return
def space(self, num_columns):
for i in range(num_columns):
print '%10s' % ' ',
def check_if_done(self):
if len(self.proc_info[self.curr_proc][PROC_CODE]) == 0:
if self.proc_info[self.curr_proc][PROC_STATE] == STATE_RUNNING:
self.move_to_done(STATE_RUNNING)
self.next_proc()
return
def run(self):
clock_tick = 0
if len(self.proc_info) == 0:
return
# track outstanding IOs, per process
self.io_finish_times = {}
for pid in range(len(self.proc_info)):
self.io_finish_times[pid] = []
# make first one active
self.curr_proc = 0
self.move_to_running(STATE_READY)
# OUTPUT: headers for each column
print '%s' % 'Time',
for pid in range(len(self.proc_info)):
print '%10s' % ('PID:%2d' % (pid)),
print '%10s' % 'CPU',
print '%10s' % 'IOs',
print ''
# init statistics
io_busy = 0
cpu_busy = 0
while self.get_num_active() > 0:
clock_tick += 1
# check for io finish
io_done = False
for pid in range(len(self.proc_info)):
if clock_tick in self.io_finish_times[pid]:
io_done = True
self.move_to_ready(STATE_WAIT, pid)
if self.io_done_behavior == IO_RUN_IMMEDIATE:
# IO_RUN_IMMEDIATE
if self.curr_proc != pid:
if self.proc_info[self.curr_proc][PROC_STATE] == STATE_RUNNING:
self.move_to_ready(STATE_RUNNING)
self.next_proc(pid)
else:
# IO_RUN_LATER
if self.process_switch_behavior == SCHED_SWITCH_ON_END and self.get_num_runnable() > 1:
# this means the process that issued the io should be run
self.next_proc(pid)
if self.get_num_runnable() == 1:
# this is the only thing to run: so run it
self.next_proc(pid)
self.check_if_done()
# if current proc is RUNNING and has an instruction, execute it
instruction_to_execute = ''
if self.proc_info[self.curr_proc][PROC_STATE] == STATE_RUNNING and \
len(self.proc_info[self.curr_proc][PROC_CODE]) > 0:
instruction_to_execute = self.proc_info[self.curr_proc][PROC_CODE].pop(0)
cpu_busy += 1
# OUTPUT: print what everyone is up to
if io_done:
print '%3d*' % clock_tick,
else:
print '%3d ' % clock_tick,
for pid in range(len(self.proc_info)):
if pid == self.curr_proc and instruction_to_execute != '':
print '%10s' % ('RUN:'+instruction_to_execute),
else:
print '%10s' % (self.proc_info[pid][PROC_STATE]),
if instruction_to_execute == '':
print '%10s' % ' ',
else:
print '%10s' % 1,
num_outstanding = self.get_ios_in_flight(clock_tick)
if num_outstanding > 0:
print '%10s' % str(num_outstanding),
io_busy += 1
else:
print '%10s' % ' ',
print ''
# if this is an IO instruction, switch to waiting state
# and add an io completion in the future
if instruction_to_execute == DO_IO:
self.move_to_wait(STATE_RUNNING)
self.io_finish_times[self.curr_proc].append(clock_tick + self.io_length)
if self.process_switch_behavior == SCHED_SWITCH_ON_IO:
self.next_proc()
# ENDCASE: check if currently running thing is out of instructions
self.check_if_done()
return (cpu_busy, io_busy, clock_tick)
#
# PARSE ARGUMENTS
#
parser = OptionParser()
parser.add_option('-s', '--seed', default=0, help='the random seed', action='store', type='int', dest='seed')
parser.add_option('-l', '--processlist', default='',
help='a comma-separated list of processes to run, in the form X1:Y1,X2:Y2,... where X is the number of instructions that process should run, and Y the chances (from 0 to 100) that an instruction will use the CPU or issue an IO',
action='store', type='string', dest='process_list')
parser.add_option('-L', '--iolength', default=5, help='how long an IO takes', action='store', type='int', dest='io_length')
parser.add_option('-S', '--switch', default='SWITCH_ON_IO',
help='when to switch between processes: SWITCH_ON_IO, SWITCH_ON_END',
action='store', type='string', dest='process_switch_behavior')
parser.add_option('-I', '--iodone', default='IO_RUN_LATER',
help='type of behavior when IO ends: IO_RUN_LATER, IO_RUN_IMMEDIATE',
action='store', type='string', dest='io_done_behavior')
parser.add_option('-c', help='compute answers for me', action='store_true', default=False, dest='solve')
parser.add_option('-p', '--printstats', help='print statistics at end; only useful with -c flag (otherwise stats are not printed)', action='store_true', default=False, dest='print_stats')
(options, args) = parser.parse_args()
random.seed(options.seed)
assert(options.process_switch_behavior == SCHED_SWITCH_ON_IO or \
options.process_switch_behavior == SCHED_SWITCH_ON_END)
assert(options.io_done_behavior == IO_RUN_IMMEDIATE or \
options.io_done_behavior == IO_RUN_LATER)
s = scheduler(options.process_switch_behavior, options.io_done_behavior, options.io_length)
# example process description (10:100,10:100)
for p in options.process_list.split(','):
s.load(p)
if options.solve == False:
print 'Produce a trace of what would happen when you run these processes:'
for pid in range(s.get_num_processes()):
print 'Process %d' % pid
for inst in range(s.get_num_instructions(pid)):
print ' %s' % s.get_instruction(pid, inst)
print ''
print 'Important behaviors:'
print ' System will switch when',
if options.process_switch_behavior == SCHED_SWITCH_ON_IO:
print 'the current process is FINISHED or ISSUES AN IO'
else:
print 'the current process is FINISHED'
print ' After IOs, the process issuing the IO will',
if options.io_done_behavior == IO_RUN_IMMEDIATE:
print 'run IMMEDIATELY'
else:
print 'run LATER (when it is its turn)'
print ''
exit(0)
(cpu_busy, io_busy, clock_tick) = s.run()
if options.print_stats:
print ''
print 'Stats: Total Time %d' % clock_tick
print 'Stats: CPU Busy %d (%.2f%%)' % (cpu_busy, 100.0 * float(cpu_busy)/clock_tick)
print 'Stats: IO Busy %d (%.2f%%)' % (io_busy, 100.0 * float(io_busy)/clock_tick)
print ''
The snippet shown below shows some detail of the options:
Options:
-h, --help show this help message and exit
-s SEED, --seed=SEED the random seed
-l PROCESS_LIST, --processlist=PROCESS_LIST
a comma-separated list of processes to run, in the
form X1:Y1,X2:Y2,... where X is the number of
instructions that process should run, and Y the
chances (from 0 to 100) that an instruction will use
the CPU or issue an IO
-L IO_LENGTH, --iolength=IO_LENGTH
how long an IO takes
-S PROCESS_SWITCH_BEHAVIOR, --switch=PROCESS_SWITCH_BEHAVIOR
when to switch between processes: SWITCH_ON_IO,
SWITCH_ON_END
-I IO_DONE_BEHAVIOR, --iodone=IO_DONE_BEHAVIOR
type of behavior when IO ends: IO_RUN_LATER,
IO_RUN_IMMEDIATE
-c compute answers for me
-p, --printstats print statistics at end; only useful with -c flag
(otherwise stats are not printed)
-
Run
process-run.py
with the following flags:-l 5:100,5:100
. What should the CPU utilization be (e.g., the percent of time the CPU is in use?)Answer: Simply easy, 100%
-
Now run with these flags:
./process-run.py -l 4:100,1:0
. These flags specify one process with 4 instructions (all to use the CPU), and one that simply issues an I/O and waits for it to be done. How long does it take to complete both processes?Answer:10 ticks time
At first,We don't know the IO length of each instruction, after checking the details of options,we find out that the default IO length is 5 ticks . So we can answer this question.
1 Run:process 0 Ready:process 1 2 Run:process 0 Ready:process 1 3 Run:process 0 Ready:process 1 4 Run:process 0 Ready:process 1 5 done Run:process 1 6 done Wait:process 1 7 done Wait:process 1 8 done Wait:process 1 9 done Wait:process 1 10 done done
-
Switch the order of the processes:
-l 1:0,4:100
. What happens now? Does switching the order matter? Why?Answer: Yes ,it explicitly is different.
Because of losing connection to the terminal,we can't do this exercise right now. But I will still try to make an answer for the question,using my ability of reasoning. The answer will be different to the answer of the question 2.
1 Run:process 0 Ready:process1 2 Wait:process 0 Run: process1 3 Wait:process 0 Run: process1 4 Wait:process 0 Run: process1 5 Wait:process 0 Run: process1 6 done done
-
We’ll now explore some of the other flags. One important flag is
-S
, which determines how the system reacts when a process issues an I/O. With the flag set toSWITCH_ON_END
, the system will NOT switch to another process while one is doing I/O, instead of waiting until the process is completely finished. What happens when you run the following two processes (-l 1:0,4:100 -c -S SWITCH_ON_END
), one doing I/O and the other doing CPU work?Answer:
No, the CPU process will not use the cpu when the IO process is in WAIT state, CPU will switch to CPU process when the IO process is done.
1 Run:process 0 Ready:process1 2 Wait:process 0 Ready:process1 3 Wait:process 0 Ready:process1 4 Wait:process 0 Ready:process1 5 Wait:process 0 Ready:process1 6 done Run:process 1 7 done Run:process 1 8 done Run:process 1 9 done Run:process 1
-
Now, run the same processes, but with the switching behavior set to switch to another process whenever one is
WAITING
for I/O (-l 1:0,4:100 -c -S SWITCH_ON_IO
). What happens now?Answer: the answer is same as the answer 3.
-
One other important behavior is what to do when an I/O completes. With
-I IO_RUN_LATER
, when an I/O completes, the process that issued it does not necessarily run right away; rather, whatever was running at the time keeps running. What happens when you run this combination of processes? (Run./process-run.py -l 3:0,5:100,5:100,5:100 -S SWITCH_ON_IO -I IO_RUN_LATER -c -p
) Are system resources being effectively utilized?Answer: IO_RUN_LATER mains that the IO process has to wait until all the CPU processes have done. During the execution, there are two part which need to promote, one is process 0 is having an Ready State when process 2 and process 3 are Running, the other is the last three of IO waiting when the cpu is idle.
-
Now run the same processes, but with
-I IO_RUN_IMMEDIATE
set, which immediately runs the process that issued the I/O. How does this behavior differ? Why might running a process that just completed an I/O again be a good idea?Answer:It will be a good idea when the process have to do other IO tasks.