时间反演对称和空间反演对称性

哈密顿量:

\[H(r)=\sum_ke^{ikr}H(k)e^{-ikr} \]

一,时间反演对称性 \(\hat{T}\):
\([\hat{T},H(r)]=\hat{T}H(r)-H(r)\hat{T}=0\) 得到: \(\hat{T}H(r)\hat{T}^{-1}=H(r)\)

\[\hat{T}\sum_{k}e^{ikr}H(k)e^{-ikr}\hat{T}^{-1} = H(r) \\ =\sum_{k}e^{-ikr}\hat{T}H(k)\hat{T}^{-1}e^{ikr} =\sum_ke^{ikr}H(k)e^{-ikr} \\ \hat{T}H(k)\hat{T}^{-1} = H(-k) \]

时间反演算符 \(T=UK\).

\[\hat{U}\hat{K}H(k)\hat{K}^{-1}\hat{U}^{-1} = H(-k) \]

时间反演算符为 \(T=-i\sigma_y K\),作用到哈密顿量上,

\[H(-k)=TH(k)T^{-1}= \begin{pmatrix} 0&-I\\ I&0 \end{pmatrix}K \begin{pmatrix} h_{\uparrow}(k)&0\\ 0&h_{\downarrow}(k) \end{pmatrix} K^{-1} \begin{pmatrix} 0&I\\ -I&0 \end{pmatrix}\\ =\begin{pmatrix} h_{\downarrow}(k)^{*}&0\\ 0&h_{\uparrow}(k)^{*} \end{pmatrix} \]


二,空间反演对称性 \(\hat{P}\):
\([\hat{P},H(r)]=\hat{P}H(r)-H(r)\hat{P}=0\) 得到: \(\hat{P}H(r)\hat{P}^{-1}=H(r)\)

\[\hat{P}\sum_{k}e^{ikr}H(k)e^{-ikr}\hat{P}^{-1} = H(r) \\ =\sum_{k}e^{-ikr}\hat{P}H(k)\hat{P}^{-1}e^{ikr} =\sum_ke^{ikr}H(k)e^{-ikr} \\ \hat{P}H(k)\hat{P}^{-1} = H(-k) \]


三,旋转对称性 \(\hat{R}\):
\([\hat{R},H(r)]=\hat{R}H(r)-H(r)\hat{R}=0\) 得到: \(\hat{R}H(r)\hat{R}^{-1}=H(r)\)

\[\hat{R}\sum_{k}e^{ikr}H(k)e^{-ikr}\hat{R}^{-1} = H(r) \\ =\sum_{k}e^{ik\hat{R}r}\hat{R}H(k)\hat{R}^{-1}e^{-ik\hat{R}r} =\sum_ke^{ikr}H(k)e^{-ikr} \\ \hat{R}H(k)\hat{R}^{-1} = H(\hat{R}k) \]

posted @ 2022-09-11 20:53  ghzphy  阅读(1564)  评论(0编辑  收藏  举报