[BZOJ] 1563: [NOI2009]诗人小G
1D/1D的方程,代价函数是一个p次函数,典型的决策单调性
用单调队列(其实算单调栈)维护决策点,优化转移
复杂度\(O(nlogn)\)
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int MAXN = 100005;
typedef long double ll;
struct Node{
int l,r,p;
Node(int _l=0,int _r=0,int _p=0){l=_l;r=_r;p=_p;}
}q[MAXN];
ll f[MAXN],s[MAXN];
int T,n,len;
ll p;
ll qpow(ll x,int y){
if(x<0)x=-x;
ll ret=1ll;
while(y){
if(y&1)ret*=x;
x*=x;
y>>=1;
}
return ret;
}
ll calc(int x,int y){return f[x]+qpow(s[y]-s[x]-len,p);}
int fnd(const Node &x,int y){
int l=x.l,r=x.r+1,p=x.p,mid,ret=l;
while(l<r){
mid=(l+r)>>1;
if(calc(y,mid)<=calc(p,mid))r=mid;
else l=mid+1;
}
return l;
}
char str[32];
void solve(){
cin>>n>>len>>p;len++;
s[0]=0;f[0]=0;
for(int i=1;i<=n;i++){
scanf("%s",str);
s[i]=s[i-1]+strlen(str)+1;
}
int h=1,t=0;
q[++t]=Node(1,n,0);
for(int i=1;i<=n;i++){
while(h<=t&&q[h].r<i)h++;
f[i]=calc(q[h].p,i);
if(calc(i,n)<=calc(q[t].p,n)){
while(h<=t&&calc(i,q[t].l)<calc(q[t].p,q[t].l))t--;
if(h>t){q[++t]=Node(i+1,n,i);continue;}
int x=fnd(q[t],i);
q[t].r=x-1;q[++t]=Node(x,n,i);
}
}
if(f[n]>1e18){puts("Too hard to arrange");return;}
printf("%.0Lf\n",f[n]);
}
int main(){
// freopen("out.out","w",stdout);
cin>>T;
while(T--)solve(),puts("--------------------");
}
本文来自博客园,作者:GhostCai,转载请注明原文链接:https://www.cnblogs.com/ghostcai/p/9725160.html