比赛-OBlack学长的训练赛 (25 Aug, 2018)

A. 试卷##

B. 果实##

据说是另一道题的弱化版,原题带修改,好像需要用 set 维护节点。这题数据非常友善,可以用莫队水过(块长卡了 \(n^{\frac{1}{2}}\) 但没卡 \(n^{\frac{2}{3}}\) )。
问题可以用 dfn 序转化为求区间不同元素个数。离线做。将询问根据左端点排序,然后维护一个 BIT ,在某个元素第一次出现的位置处 +1 。然后再 getsum 就可以得到答案了。左端点右移时,把 BIT 上当前位置 -1 ,在当前位置元素下一次出现的位置(用类似链式前向星的方法预处理) +1 即可。
然而考试结束后 OBlack 说在线更好做。树上差分即可。比如某元素的出现的 dfn 值分别为 \(1,3,10,20\) ,则在这些位置 +1 ;然后在同元素 dfn 值相邻的两个节点的 lca 处 -1 ,即在 \(lca_{1,3},lca_{3,10},lca_{10,20}\) 处 -1 。之后对于每个询问,求子树权值和即可。

离线 BIT 做法

#include <cstdio>
#include <algorithm>
#include <ctype.h>
#include <vector>

using namespace std;

char *p1, *p2, buf[1 << 20], sss[50];

inline char gc()
{
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<20,stdin))==p1?EOF:*p1++;
}

template<typename T>
void rd(T &num)
{
	char tt;
	while (!isdigit(tt = gc()));
	num = tt - '0';
	while (isdigit(tt = gc()))
		num = num * 10 + tt - '0';
	return;
}

template<typename T>
void pt(T num)
{
	int top = 0;
	do sss[++top] = num % 10 + '0';
	while (num /= 10);
	while (top)
		putchar(sss[top--]);
	putchar('\n');
	return;
}

const int _N = 501000;

vector<int> G[_N];
int dfn[_N], siz[_N], A[_N], B[_N], bit[_N], nxt[_N], fst[_N], ans[_N];
int Time, N, M, C;

struct data {
	int id, v;
	bool operator < (const data &tmp)
	const
	{
		return dfn[v] < dfn[tmp.v];
	}
} Q[_N];

void build(int p, int dad)
{
	dfn[p] = ++Time, siz[p] = 1, B[dfn[p]] = A[p];
	for (int i = G[p].size() - 1; i >= 0; --i) {
		int v = G[p][i];
		if (v != dad)
			build(v, p), siz[p] += siz[v];
	}
	return;
}

void add(int k, int d)
{
	for (int i = k; i <= N; i += i & -i)
		bit[i] += d;
	return;
}

int getsum(int k)
{
	int sum = 0;
	for (int i = k; i; i ^= i & -i)
		sum += bit[i];
	return sum;
}

int main()
{
	
	rd(N), rd(M), rd(C);
	for (int i = 1; i <= N; ++i)
		rd(A[i]);
	for (int a, b, i = 1; i < N; ++i) {
		rd(a), rd(b);
		G[a].push_back(b), G[b].push_back(a);
	}
	build(1, 0);
	for (int i = N; i >= 1; --i)
		nxt[i] = fst[B[i]], fst[B[i]] = i;
	for (int i = 1; i <= N; ++i)
		if (fst[B[i]] == i)
			add(i, 1);
	for (int t, i = 1; i <= M; ++i)
		rd(Q[i].v), Q[i].id = i;
	sort(Q + 1, Q + 1 + M);
	int pos = 1;
	for (int i = 1; i <= M; ++i) {
		while (pos < dfn[Q[i].v]) {
			add(pos, -1);
			if (nxt[pos]) add(nxt[pos], 1);
			++pos;
		}
		ans[Q[i].id] = getsum(dfn[Q[i].v] + siz[Q[i].v] - 1);
	}
	for (int i = 1; i <= M; ++i)
		pt(ans[i]);
	return 0;
}

C. 旅行##

#include <cstdio>
#include <algorithm>
#include <ctype.h>
#include <vector>
#include <queue>

using namespace std;

char *p1, *p2, buf[1 << 20], sss[50];

inline char gc()
{
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<20,stdin))==p1?EOF:*p1++;
}

template<typename T>
void rd(T &num)
{
	char tt;
	while (!isdigit(tt = gc()));
	num = tt - '0';
	while (isdigit(tt = gc()))
		num = num * 10 + tt - '0';
	return;
}

template<typename T>
void pt(T num)
{
	int top = 0;
	do sss[++top] = num % 10 + '0';
	while (num /= 10);
	while (top)
		putchar(sss[top--]);
	putchar('\n');
	return;
}

const int _N = 51000;

struct edge {
	int v, w;
	edge(int v = 0, int w = 0):
		v(v), w(w) { }
	bool operator < (const edge &tmp)
	const
	{
		return w > tmp.w;
	}
};

priority_queue<edge> Q;
vector<edge> G[_N];
int dis[_N];
int N, M, ans = -1;

int dijkstra(int lim, int t)
{
	for (int i = 0; i <= N; ++i)
		dis[i] = -1;
	dis[1] = 0, Q.push(edge(1, 0));
	while (!Q.empty()) {
		edge p = Q.top();
		Q.pop();
		if (p.w != dis[p.v]) continue;
		for (int i = G[p.v].size() - 1; i >= 0; --i) {
			edge v = G[p.v][i];
			
			if (p.v == 1 && v.v >> lim & 1 ^ t) continue;
			if (v.v == 0 && p.v >> lim & 1 ^ t ^ 1) continue;
			
			if (dis[v.v] == -1 || dis[v.v] > dis[p.v] + v.w)
				Q.push(edge(v.v, dis[v.v] = dis[p.v] + v.w));
		}
	}
	return dis[0];
}

int main()
{
	rd(N), rd(M);
	for (int x, y, c, d, i = 1; i <= M; ++i) {
		rd(x), rd(y), rd(c), rd(d);
		if (x > y) swap(x, y), swap(c, d);
		G[x].push_back(edge(y, c));
		if (x == 1) x = 0;
		G[y].push_back(edge(x, d));
	}
	int tmp = ,N cnt = 0;
	while (tmp) ++cnt, tmp >>= 1;
	for (int i = 0; i < cnt; ++i) {
		int t = dijkstra(i, 0);
		if (t != -1 && (ans == -1 || ans > t)) ans = t;
		t = dijkstra(i, 1);
		if (t != -1 && (ans == -1 || ans > t)) ans = t;
	}
	pt(ans);
	return 0;
}
posted @ 2018-08-25 17:21  derchg  阅读(153)  评论(0编辑  收藏  举报