比赛-OBlack学长的训练赛 (25 Aug, 2018)
A. 试卷##
B. 果实##
据说是另一道题的弱化版,原题带修改,好像需要用 set 维护节点。这题数据非常友善,可以用莫队水过(块长卡了 \(n^{\frac{1}{2}}\) 但没卡 \(n^{\frac{2}{3}}\) )。
问题可以用 dfn 序转化为求区间不同元素个数。离线做。将询问根据左端点排序,然后维护一个 BIT ,在某个元素第一次出现的位置处 +1 。然后再 getsum 就可以得到答案了。左端点右移时,把 BIT 上当前位置 -1 ,在当前位置元素下一次出现的位置(用类似链式前向星的方法预处理) +1 即可。
然而考试结束后 OBlack 说在线更好做。树上差分即可。比如某元素的出现的 dfn 值分别为 \(1,3,10,20\) ,则在这些位置 +1 ;然后在同元素 dfn 值相邻的两个节点的 lca 处 -1 ,即在 \(lca_{1,3},lca_{3,10},lca_{10,20}\) 处 -1 。之后对于每个询问,求子树权值和即可。
离线 BIT 做法
#include <cstdio>
#include <algorithm>
#include <ctype.h>
#include <vector>
using namespace std;
char *p1, *p2, buf[1 << 20], sss[50];
inline char gc()
{
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<20,stdin))==p1?EOF:*p1++;
}
template<typename T>
void rd(T &num)
{
char tt;
while (!isdigit(tt = gc()));
num = tt - '0';
while (isdigit(tt = gc()))
num = num * 10 + tt - '0';
return;
}
template<typename T>
void pt(T num)
{
int top = 0;
do sss[++top] = num % 10 + '0';
while (num /= 10);
while (top)
putchar(sss[top--]);
putchar('\n');
return;
}
const int _N = 501000;
vector<int> G[_N];
int dfn[_N], siz[_N], A[_N], B[_N], bit[_N], nxt[_N], fst[_N], ans[_N];
int Time, N, M, C;
struct data {
int id, v;
bool operator < (const data &tmp)
const
{
return dfn[v] < dfn[tmp.v];
}
} Q[_N];
void build(int p, int dad)
{
dfn[p] = ++Time, siz[p] = 1, B[dfn[p]] = A[p];
for (int i = G[p].size() - 1; i >= 0; --i) {
int v = G[p][i];
if (v != dad)
build(v, p), siz[p] += siz[v];
}
return;
}
void add(int k, int d)
{
for (int i = k; i <= N; i += i & -i)
bit[i] += d;
return;
}
int getsum(int k)
{
int sum = 0;
for (int i = k; i; i ^= i & -i)
sum += bit[i];
return sum;
}
int main()
{
rd(N), rd(M), rd(C);
for (int i = 1; i <= N; ++i)
rd(A[i]);
for (int a, b, i = 1; i < N; ++i) {
rd(a), rd(b);
G[a].push_back(b), G[b].push_back(a);
}
build(1, 0);
for (int i = N; i >= 1; --i)
nxt[i] = fst[B[i]], fst[B[i]] = i;
for (int i = 1; i <= N; ++i)
if (fst[B[i]] == i)
add(i, 1);
for (int t, i = 1; i <= M; ++i)
rd(Q[i].v), Q[i].id = i;
sort(Q + 1, Q + 1 + M);
int pos = 1;
for (int i = 1; i <= M; ++i) {
while (pos < dfn[Q[i].v]) {
add(pos, -1);
if (nxt[pos]) add(nxt[pos], 1);
++pos;
}
ans[Q[i].id] = getsum(dfn[Q[i].v] + siz[Q[i].v] - 1);
}
for (int i = 1; i <= M; ++i)
pt(ans[i]);
return 0;
}
C. 旅行##
#include <cstdio>
#include <algorithm>
#include <ctype.h>
#include <vector>
#include <queue>
using namespace std;
char *p1, *p2, buf[1 << 20], sss[50];
inline char gc()
{
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<20,stdin))==p1?EOF:*p1++;
}
template<typename T>
void rd(T &num)
{
char tt;
while (!isdigit(tt = gc()));
num = tt - '0';
while (isdigit(tt = gc()))
num = num * 10 + tt - '0';
return;
}
template<typename T>
void pt(T num)
{
int top = 0;
do sss[++top] = num % 10 + '0';
while (num /= 10);
while (top)
putchar(sss[top--]);
putchar('\n');
return;
}
const int _N = 51000;
struct edge {
int v, w;
edge(int v = 0, int w = 0):
v(v), w(w) { }
bool operator < (const edge &tmp)
const
{
return w > tmp.w;
}
};
priority_queue<edge> Q;
vector<edge> G[_N];
int dis[_N];
int N, M, ans = -1;
int dijkstra(int lim, int t)
{
for (int i = 0; i <= N; ++i)
dis[i] = -1;
dis[1] = 0, Q.push(edge(1, 0));
while (!Q.empty()) {
edge p = Q.top();
Q.pop();
if (p.w != dis[p.v]) continue;
for (int i = G[p.v].size() - 1; i >= 0; --i) {
edge v = G[p.v][i];
if (p.v == 1 && v.v >> lim & 1 ^ t) continue;
if (v.v == 0 && p.v >> lim & 1 ^ t ^ 1) continue;
if (dis[v.v] == -1 || dis[v.v] > dis[p.v] + v.w)
Q.push(edge(v.v, dis[v.v] = dis[p.v] + v.w));
}
}
return dis[0];
}
int main()
{
rd(N), rd(M);
for (int x, y, c, d, i = 1; i <= M; ++i) {
rd(x), rd(y), rd(c), rd(d);
if (x > y) swap(x, y), swap(c, d);
G[x].push_back(edge(y, c));
if (x == 1) x = 0;
G[y].push_back(edge(x, d));
}
int tmp = ,N cnt = 0;
while (tmp) ++cnt, tmp >>= 1;
for (int i = 0; i < cnt; ++i) {
int t = dijkstra(i, 0);
if (t != -1 && (ans == -1 || ans > t)) ans = t;
t = dijkstra(i, 1);
if (t != -1 && (ans == -1 || ans > t)) ans = t;
}
pt(ans);
return 0;
}