导航

spark2.1源码分析2:从SparkPi分析一个job的执行

Posted on 2016-12-22 16:41  ggzone  阅读(186)  评论(0编辑  收藏  举报

从SparkPi的一个行动操作入手,选择Run–Debug SparkPi进入调试:
F8:Step Over
F7:Step Into
右键Run to Cursor
Ctrl+B 查看定义
导航–Back和Forward

SparkPi:

val count = spark.sparkContext.parallelize(1 until n, slices).map { i =>
      val x = random * 2 - 1
      val y = random * 2 - 1
      if (x*x + y*y < 1) 1 else 0
    }.~~reduce(_ + _)~~

RDD:
/**
   * Reduces the elements of this RDD using the specified commutative and
   * associative binary operator.
   */
  def reduce(f: (T, T) => T): T = withScope {
    val cleanF = sc.clean(f)
//    对单个Partition执行clean后的函数
    val reducePartition: Iterator[T] => Option[T] = iter => {
      if (iter.hasNext) {
        Some(iter.reduceLeft(cleanF))
      } else {
        None
      }
    }
    var jobResult: Option[T] = None
//    合并所有Partition结果
    val mergeResult = (index: Int, taskResult: Option[T]) => {
      if (taskResult.isDefined) {
        jobResult = jobResult match {
          case Some(value) => Some(f(value, taskResult.get))
          case None => taskResult
        }
      }
    }
    ~~sc.runJob(this, reducePartition, mergeResult)~~
    // Get the final result out of our Option, or throw an exception if the RDD was empty
    jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
  }
SparkContext:
  /**
   * Run a job on all partitions in an RDD and pass the results to a handler function.
   */
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      processPartition: Iterator[T] => U,
      resultHandler: (Int, U) => Unit)
  {
    //进一步封装对每个Partition处理处理的函数
    val processFunc = (context: TaskContext, iter: Iterator[T]) => processPartition(iter)
    ~~runJob[T, U](rdd, processFunc, 0 until rdd.partitions.length, resultHandler)~~
  }

SparkContext:
 /**
   * Run a function on a given set of partitions in an RDD and pass the results to the given
   * handler function. This is the main entry point for all actions in Spark.
   */
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      resultHandler: (Int, U) => Unit): Unit = {
    //判断drive是否调用sc.stop停止程序
    if (stopped.get()) {
      throw new IllegalStateException("SparkContext has been shutdown")
    }
    val callSite = getCallSite
    val cleanedFunc = clean(func)
    logInfo("Starting job: " + callSite.shortForm)
    if (conf.getBoolean("spark.logLineage", false)) {
      logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
    }
    //cleanedFunc每个分区处理函数
    //partitions分区数
    //resultHandler每个分区结果的处理函数
    ~~dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)~~
    progressBar.foreach(_.finishAll())
    //请注意此处会执行检查点操作
    rdd.doCheckpoint()
  }
DAGScheduler
 /**
   * Run an action job on the given RDD and pass all the results to the resultHandler function as
   * they arrive.
   *
   * @param rdd target RDD to run tasks on
   * @param func a function to run on each partition of the RDD
   * @param partitions set of partitions to run on; some jobs may not want to compute on all
   *   partitions of the target RDD, e.g. for operations like first()
   * @param callSite where in the user program this job was called
   * @param resultHandler callback to pass each result to
   * @param properties scheduler properties to attach to this job, e.g. fair scheduler pool name
   *
   * @throws Exception when the job fails
   */
  def runJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): Unit = {
    val start = System.nanoTime
    ~~val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)~~
    // Note: Do not call Await.ready(future) because that calls `scala.concurrent.blocking`,
    // which causes concurrent SQL executions to fail if a fork-join pool is used. Note that
    // due to idiosyncrasies in Scala, `awaitPermission` is not actually used anywhere so it's
    // safe to pass in null here. For more detail, see SPARK-13747.
    val awaitPermission = null.asInstanceOf[scala.concurrent.CanAwait]
    waiter.completionFuture.ready(Duration.Inf)(awaitPermission)
    waiter.completionFuture.value.get match {
      case scala.util.Success(_) =>
        logInfo("Job %d finished: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
      case scala.util.Failure(exception) =>
        logInfo("Job %d failed: %s, took %f s".format
          (waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
        // SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
        val callerStackTrace = Thread.currentThread().getStackTrace.tail
        exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
        throw exception
    }
  }

DAGScheduler:
  /**
   * Submit an action job to the scheduler.
   *
   * @param rdd target RDD to run tasks on
   * @param func a function to run on each partition of the RDD
   * @param partitions set of partitions to run on; some jobs may not want to compute on all
   *   partitions of the target RDD, e.g. for operations like first()
   * @param callSite where in the user program this job was called
   * @param resultHandler callback to pass each result to
   * @param properties scheduler properties to attach to this job, e.g. fair scheduler pool name
   *
   * @return a JobWaiter object that can be used to block until the job finishes executing
   *         or can be used to cancel the job.
   *
   * @throws IllegalArgumentException when partitions ids are illegal
   */
  def submitJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      callSite: CallSite,
      resultHandler: (Int, U) => Unit,
      properties: Properties): JobWaiter[U] = {
    // Check to make sure we are not launching a task on a partition that does not exist.
    val maxPartitions = rdd.partitions.length
    partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
      throw new IllegalArgumentException(
        "Attempting to access a non-existent partition: " + p + ". " +
          "Total number of partitions: " + maxPartitions)
    }

    val jobId = nextJobId.getAndIncrement()
    if (partitions.size == 0) {
      // Return immediately if the job is running 0 tasks
      return new JobWaiter[U](this, jobId, 0, resultHandler)
    }

    assert(partitions.size > 0)
    val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
    //将resultHandler也就是一开始reduce中的mergeResult封装进JobWaiter
    ~~val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)~~
   //Put the event into the event queue. The event thread will process it later.
    eventProcessLoop.post(JobSubmitted(
      jobId, rdd, func2, partitions.toArray, callSite, waiter,
      SerializationUtils.clone(properties)))
    waiter
  }
private[scheduler] val eventProcessLoop = new DAGSchedulerEventProcessLoop(this)

当job被执行后,程序返回到DAGScheduler.runJob函数,显示成功或者失败的信息。
此时JobWaiter中执行了mergeResult函数,因为mergeResult是个闭包,
引用了RDD类中的JobResult,所以结果已经返回到RDD对象中。
一直返回到RDD:reduce中jobResult.getOrElse(throw new U nsupportedOperationException("empty collection"))
会看到最终返回了jobResult。


JobWaiter:
/**
 * An object that waits for a DAGScheduler job to complete. As tasks finish, it passes their
 * results to the given handler function.
 */
异步等待job完成,内部调用reduce中传入的mergeResult将每个Partition的结果合并,返回最终结果