存板子(●'◡'●)
#include<cstdio> #include<cmath> #include<iostream> #include<algorithm> #include<vector> #include<stack> #include<cstring> #include<queue> #include<set> #include<string> #include<map> #include <complex> #include <time.h> #define PI acos(-1) using namespace std; typedef long long ll; typedef double db; const int maxn = 400+1000; const int sigma=26; const ll mod = 1000000007; const int INF = 0x3f3f3f; const db eps = 1e-10; struct point { double x,y; point(double x=0,double y=0): x(x),y(y){} }; typedef point Vector; Vector operator +(point a,point b) { return Vector(a.x+b.x,a.y+b.y); } Vector operator *(point a,double b) { return Vector(a.x*b,a.y*b); } Vector operator -(point a,point b) { return Vector(a.x-b.x,a.y-b.y); } double dot(Vector a,Vector b) { //内积 return a.x*b.x+a.y*b.y; } double cross(Vector a,Vector b) { //外积 return a.x*b.y-a.y*b.x; } double len(Vector a) { //长度 return sqrt(a.x*a.x+a.y*a.y); } double DistanceToLine(point p, point a, point b) {//点p到a.b形成的直线的距离 Vector v1=b-a, v2=p-a; return fabs(cross(v1, v2))/len(v1); } Vector Rotate(Vector a,double rad) { //向量a、顺时针旋转rad return Vector(a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad)); } point getans(point p,Vector v,point q,Vector w){ //求两直线交点 Vector u= p-q; double t=cross(w,u) / cross(v,w); return p+v*t; } db mul(point s, point e, point op) { //判断点是否在直线上 return (s.x-op.x)*(e.y-op.y)-(e.x-op.x)*(s.y-op.y); } point getPoint(point a,point b,point c) { Vector bc=c-b; Vector ba=a-b; double x=acos( dot(ba,bc) / len(bc) / len(ba) ); Vector bd= Rotate(bc,x/3); Vector ca=a-c; Vector cb=b-c; x=acos( dot(cb,ca) / len(cb) / len(ca) ); Vector cd=Rotate(cb,-x/3); return getans(b,bd,c,cd); } void solve() { point a,b,c,d,e,f; scanf("%lf%lf",&a.x,&a.y); scanf("%lf%lf",&b.x,&b.y); scanf("%lf%lf",&c.x,&c.y); d=getPoint(a,b,c); e=getPoint(b,c,a); f=getPoint(c,a,b); printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",d.x,d.y,e.x,e.y,f.x,f.y); } int main() { int t = 1; //freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); scanf("%d", &t); while(t--) { solve(); } return 0; }