gggyt  
没谁离不开谁

  题意: 给出一个二部图,U、V分别是二部图的两个点集,其中,U中每个点会有两条边连到V中两个不同的点。

  完美匹配定义为:所有点都成功匹配。

  思路:已知一定是完美匹配了呀(也一定存在),我们先把度数为一的匹配了(用拓扑把度数为一的找出来),那么剩下的图中左右各有m个点,每个点度数都不小于2,且左边每个点度数都是2,而右侧总度数是2m,因此右侧只能是每个点度数都是2。这说明这个图每个连通块是个环,在环上间隔着取即可,一共两种方案。

   然后就完了(还是看了别人的才懂得ε=ε=ε=┏(゜ロ゜;)┛)。
/*  gyt
       Live up to every day            */
#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<cstring>
#include<queue>
#include<set>
#include<string>
#include<map>
#include <time.h>
#define PI acos(-1)
using namespace std;
typedef long long ll;
typedef double db;
const int maxn = 6e5+10;
const int maxm=5000+10;
const ll mod = 998244353;
const int INF = 0x3f3f3f;
const db eps = 1e-9;
struct node {
    ll w;
    int v, next;
}edge[maxn<<1];
int no, head[maxn];
int bad[maxn], deg[maxn], vis[maxn];
int n, nn;
queue<int>q;
vector<int>vtt;
ll ans, must;

void init() {
    no=0;
    memset(vis, 0, sizeof(vis));
    memset(head, -1, sizeof(head));
    memset(bad, 0, sizeof(bad));
    memset(deg, 0, sizeof(deg));
}
void add(int u, int v, int w) {
    edge[no].v=v; edge[no].next=head[u];
    edge[no].w=w; head[u]=no++;
}
ll dfs(int cur, int father)  {
    vtt.push_back(cur);
    vis[cur] = 1;
    for(int k = head[cur], kk; k != -1; k = edge[k].next)   {
        int v = edge[k].v;
        if(v == father) continue;
        if(bad[v] || vis[v]) continue;
        vis[v] = 1; vtt.push_back(v);
        for(kk = head[v]; kk != -1; kk = edge[kk].next) {
            if(!bad[edge[kk].v] && edge[kk].w != cur)
                break;
        }
        return dfs(edge[kk].v, v)*edge[k].w%mod;
    }
    return 1;
}
void solve() {
    init();  scanf("%d", &n);
    nn=n*2;
    for (int i=1; i<=n; i++) {
        int v, w;  scanf("%d%d", &v, &w);
        add(i, n+v, w);  add(n+v, i, w);
        deg[i]++, deg[n+v]++;
        scanf("%d%d", &v, &w);
        add(i, n+v, w);  add(n+v, i, w);
        deg[i]++, deg[n+v]++;
    }
    must=1;
    while(!q.empty())  q.pop();
    for (int i=1; i<=n; i++) {
        if (deg[n+i]==1)  q.push(n+i);  //把度数为一的提出来
    }
    while(!q.empty()) {
        int u=q.front();  q.pop();
        bad[u]=1;
        for (int k=head[u]; ~k; k=edge[k].next) {   //找到度数为一的点连的另一个点a
            int v=edge[k].v;
            if (bad[v])  continue;
            must=must*edge[k].w%mod;
            bad[v]=1;
            for (int kk=head[v]; ~kk; kk=edge[kk].next) {//把a相连的点找出来,如果减掉1还是1,说明他能匹配的也只能是一个
                if (bad[edge[kk].v])  continue;if (--deg[edge[kk].v]==1)  {
                    q.push(edge[kk].v);
                }
            }
        }
    }
    ans=must;
    //cout<<ans<<endl;
    for (int i=1; i<=n; i++) {
        if (vis[i]||bad[i])  continue;
        ll ans1=0;
        for(int k = head[i], kk; k != -1; k = edge[k].next) {//分别两种匹配的结果
            int v=edge[k].v;
            vtt.clear();
            vis[v]=1;
            for ( kk=head[v]; ~kk; kk=edge[kk].next) {
                if (!bad[edge[kk].v] && edge[kk].v!=i)  break;
            }
            ans1=(ans1+dfs(edge[kk].v, v)*edge[k].w%mod)%mod;
           // cout<<ans1<<endl;
            vis[v]=0;
            for (int j=0; j<vtt.size(); j++) {
                vis[vtt[j]]=0;
            }
            vtt.push_back(v);
        }
        for (int j=0; j<vtt.size(); j++) {
            vis[vtt[j]]=1;
        }
        ans = ans*ans1%mod;
    }
    printf("%lld\n", ans);
}
int main() {
    int t = 1;
    //freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
    scanf("%d", &t);
    while(t--)
        solve();
    return 0;
}

 

 
posted on 2017-08-14 19:12  gggyt  阅读(210)  评论(0编辑  收藏  举报