OpenCV3编程入门笔记(6)自我验证各函数程序代码

// asw.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;

int main()
{
    Mat srcImage = imread("C:/Users/Administrator/Desktop/车牌识别/车牌图像库/1.jpg");
    //DrawEllipse(img,(10,20),(30,20),0,360,2,8);
    Mat dstImage; 
    imshow("原图",srcImage);
    int rowNumber = srcImage.rows;
    int colNumber = srcImage.cols;
    Mat imageRIO = srcImage(Rect(50,50,100,000));
    //imshow("3",imageRIO);
    imwrite("图3.jpg",imageRIO);
    Mat imgGray;
    cvtColor(srcImage,dstImage,CV_BGR2GRAY);
    imshow("灰度图.jpg",dstImage);
    imgGray = dstImage;

    //边缘检测 Sobel Laplacian Canny 其中Canny算子只能处理(8位)灰度图,其余两种8位32位都可以
    Mat grad_x,grad_y;
    Sobel(imgGray,grad_x,CV_8U,1,0,3,1,1);//X方向上的Sobel算子检测,其中3,1,0都是默认值
    imshow("Sobel算子X方向检测图",grad_x);
    Sobel(imgGray,grad_y,CV_8U,0,1,3,1,0);//Y方向上的Sobel算子检测,其中3,1,0都是默认值
    imshow("Sobel算子Y方向检测图",grad_y);
    
    addWeighted(grad_x,0.5,grad_y,0.5,0,dstImage);//合并梯度
    imshow("整体方向Sobel图",dstImage);

    Laplacian(imgGray,dstImage,CV_8U);
    imshow("laplacian算子检测图",dstImage);

    Canny(imgGray,dstImage,50,200,3);//50和200表示第一个滞后性阈值和第二个滞后性阈值,较小者用于边缘连接,较大者控制强边缘的初始段,达阈值opnecv推荐为小阈值的3倍;
                                    //3表示应用的Sobel算子的孔径大小 有默认值为3;
    imshow("Caany算子检测图",dstImage);
    //waitKey(0);

    // 霍夫变换 hough
    vector<Vec2f> lines;//定义一个矢量结构lines用于存放得到的线段矢量集合
    HoughLines(dstImage,lines,1,CV_PI/180,150);
    //依次在图中绘制出每条线段
    for (size_t i = 0;i < lines.size();i++)
    {
        float rho = lines[i][0],theta = lines[i][1];
        Point pt1,pt2;
        double a = cos(theta),b = sin(theta);
        double x0 = rho*a,y0 = rho*b;//A是与直线垂直的线交点 坐标为(x0,y0)=(rho*cos(theta),rho*sin(theta));
        //向上取整函数cvCeil、向下取整函数cvFloor、四舍五入函数cvRound;

        pt1.x = cvRound(x0+1000*(-b));//1000是取两点之间的距离,可操控量;
        pt1.y = cvRound(y0+1000*(a));//pt1是位于A较上的一个点;
        pt2.x = cvRound(x0-1000*(-b));//pt2是位于A较下的一个点;
        pt2.y = cvRound(y0-1000*(a));

        line(dstImage,pt1,pt2,Scalar(55,100,195),1,CV_AA);
    }
    imshow("hough检测直线图",dstImage);
    //waitKey(0);

    // 寻找轮廓 只处理8位 即灰度图像
    vector<vector<Point>> contours;
    findContours(imgGray,contours,CV_RETR_EXTERNAL,CV_CHAIN_APPROX_NONE);
    drawContours(dstImage,contours,-1,Scalar(0),3);
    imshow("轮廓图",dstImage);
    waitKey(0);

    //阈值化操作
    threshold(srcImage,dstImage,100,255,3);
    imshow("固定阈值化图像",dstImage);
    adaptiveThreshold(imgGray,dstImage,255,ADAPTIVE_THRESH_MEAN_C,THRESH_BINARY,3,1);
    imshow("自适应阈值化图像",dstImage);
    waitKey(0);

    // resize函数实现
    resize(srcImage,dstImage,Size(),0.5,0.5);//缩小为一半
    imshow("缩放1/2图",dstImage);
    resize(srcImage,dstImage,Size(),2,2);//放大2倍
    imshow("放大2倍图",dstImage);
    resize(srcImage,dstImage,Size(srcImage.cols*3,srcImage.rows*3));//放大3倍
    imshow("放大3倍图",dstImage);
    //waitKey(0);

    // 金字塔函数实现
    pyrUp(srcImage,dstImage,Size(srcImage.cols*2,srcImage.rows*2));// 放大2倍
    imshow("金字塔放大2倍图",dstImage);
    pyrDown(srcImage,dstImage,Size(srcImage.cols/2,srcImage.rows/2));// 缩小2倍
    imshow("金字塔缩小2倍图",dstImage);
    waitKey(0);
    
    //漫水填充算法
    Rect ccomp;
    floodFill(srcImage,Point(50,300),Scalar(155,255,55),&ccomp,Scalar(20,20,20),Scalar(20,20,20));
    imshow("漫水填充图",srcImage);
    
    //膨胀腐蚀
    Mat element = getStructuringElement(MORPH_RECT,Size(15,15));
    erode(srcImage,dstImage,element);
    imshow("腐蚀图",dstImage);
    dilate(srcImage,dstImage,element);
    imshow("膨胀图",dstImage);
    waitKey(0);
    
    //滤波
    boxFilter(srcImage,dstImage,-1,Size(3,3));
    imshow("方框滤波图",dstImage);

    blur(srcImage,dstImage,Size(3,3));
    imshow("均值滤波图",dstImage);

    GaussianBlur(srcImage,dstImage,Size(5,7),1,1);
    imshow("高斯滤波图",dstImage);
    waitKey(0);
    cvtColor(srcImage,dstImage,CV_BGR2GRAY);
    imwrite("图1.jpg",srcImage);
    Mat logoImage = imread("图3.jpg");
    if (!logoImage.data)
    {
        printf("读取图片失败 \n");
        return false;
    }
    //定义一个Mat类型并给其设定RIO区域
    Mat imageRIO1 = srcImage(Rect(100,200,imageRIO.rows,imageRIO.cols));
    Mat mask = imread("原图.jpg");
    logoImage.copyTo(imageRIO1,mask); 
    imshow("1",srcImage);
    imshow("2",dstImage);
    waitKey(0);
    return 0;
}

 

posted on 2016-07-19 22:37  在某一天老去  阅读(1707)  评论(0编辑  收藏  举报

导航