OpenCV_轮廓的查找、表达、绘制、特性及匹配
转摘网址为:http://www.cnblogs.com/slysky/archive/2011/10/14/2212227.html
虽然Canny之类的边缘检测算法可以根据像素间的差异检测出轮廓边界的像素,但是它并没有将轮廓作为一个整体。下一步是要将这些边缘像素组装成轮廓。
轮廓是构成任何一个形状的边界或外形线。直方图对比和模板匹配根据色彩及色彩的分布来进行匹配,以下包括:轮廓的查找、表达方式、组织方式、绘制、特性、匹配。
首先回忆下几个结构体:
首先是图像本身的结构体:
typedef struct CvMat
{
int type; /* CvMat 标识 (CV_MAT_MAGIC_VAL), 元素类型和标记 */
int step; /* 以字节为单位的行数据长度*/
int* refcount; /* 数据引用计数 */
union
{
uchar* ptr;
short* s;
int* i;
float* fl;
double* db;
} data;
union
{
int rows;
int height;
};
union
{
int cols;
int width;
};
这个结构体是最基础的矩阵,而图像本身就是一个复杂的矩阵,所以图像是对这个结构体的继承:
typedef struct _IplImage
{
int nSize; /* IplImage大小 */
int ID; /* 版本 (=0)*/
int nChannels; /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */
int alphaChannel; /* 被OpenCV忽略 */
int depth; /* 像素的位深度: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,
IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F 可支持 */
char colorModel[4]; /* 被OpenCV忽略 */
char channelSeq[4]; /* 同上 */
int dataOrder; /* 0 - 交叉存取颜色通道, 1 - 分开的颜色通道.
cvCreateImage只能创建交叉存取图像 */
int origin; /* 0 - 顶—左结构,1 - 底—左结构 (Windows bitmaps 风格) */
int align; /* 图像行排列 (4 or 8). OpenCV 忽略它,使用 widthStep 代替 */
int width; /* 图像宽像素数 */
int height; /* 图像高像素数*/
struct _IplROI *roi;/* 图像感兴趣区域. 当该值非空只对该区域进行处理 */
struct _IplImage *maskROI; /* 在 OpenCV中必须置NULL */
void *imageId; /* 同上*/
struct _IplTileInfo *tileInfo; /*同上*/
int imageSize; /* 图像数据大小(在交叉存取格式下imageSize=image->height*image->widthStep),单位字节*/
char *imageData; /* 指向排列的图像数据 */
int widthStep; /* 排列的图像行大小,以字节为单位 */
int BorderMode[4]; /* 边际结束模式, 被OpenCV忽略 */
int BorderConst[4]; /* 同上 */
char *imageDataOrigin; /* 指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的 */
}IplImage;
值得注意的地方:首先是origin这个,当有些图像复制或者视频播放时候,由于原点坐标位置未定,很容造成图片倒置。这时就得用void cvFlip( const CvArr* src, CvArr* dst=NULL, int flip_mode=0)函数或者直接设定origin来改变坐标原点;widthstep就是CvMat的step;
构造方法:IplImage* cvCreateImage( CvSize size, int depth, int channels );
直方图结构:
typedef struct CvHistogram
{
int type;
CvArr* bins;
float thresh[CV_MAX_DIM][2]; /* 对于标准直方图,bins的值有左边界+右边界=2 */
float** thresh2; /* 对于非标准直方图 */
CvMatND mat; /* embedded matrix header for array histograms */
}CvHistogram;
因此,由于直方图的复杂性,得到一个图片的直方图的步骤就不是一个函数完成的:
1,分割图片通道
2,求出bins数量及范围
3,CvHistogram* cvCreateHist( int dims, int* sizes, int type,float** ranges=NULL, int uniform=1 );
创建直方图
4,void cvCalcHist( IplImage** image, CvHistogram* hist,int accumulate=0, const CvArr* mask=NULL );
计算直方图
下面开始轮廓的学习。
查找轮廓
首先是如何在图像中找到轮廓,可以利用OpenCV提供的方法cvFindContours()可以很方便的查找轮廓。
cvFindContours()方法从二值图像中寻找轮廓。因此此方法处理的图像可以是从cvCanny()函数得到的有边缘像素的图像,或者从cvThreshold()及cvAdaptiveThreshold()得到的图像,这时的边缘是正和负区域之间的边界。
既然在查找之前,我们需要将彩色图像转换成灰度图像,然后再将灰度图像转换成二值图像。代码如下所示:
1 CvSeq *contours = 0;
2 cvCvtColor(src,dst,CV_BGR2GRAY);//将源图像进行灰度化
3 cvThreshold(dst,dst,f_thresh,255,CV_THRESH_BINARY);//二值化阈值 虽然第一个参数是const,但仍可以更改dst
4 cvFindContours(dst,f_storage,&contours); //查找轮廓
5 cvZero(dst);
轮廓的表达方式
使用上面的代码可以得到图像的默认轮廓,但是轮廓在电脑中是如何表达的呢?在OpenCv中提供了两类表达轮廓的方式:顶点的序列、Freeman链码。
首先介绍下内存存储器的概念,这是OpenCV在创建动态对象时存取内存的技术。
CvMemStorage* cvCreateMemStorage( int block_size=0 );//创建默认值大小的内存空间
void cvReleaseMemStorage( CvMemStorage** storage );//释放内存空间
void cvClearMemStorage( CvMemStorage* storage );//清空内存块,可以用于重复使用,将内存返还给存储器,而不是返回给系统
void *cvMemStorageAlloc(CvMemStorage *storage,size_t size);//开辟内存空间
序列
序列是内存存储器中可以存储的一种对象。序列是某种结构的链表。序列在内存中被实现为一个双端队列,因此序列可以实习快速的随机访问,以及快速删除顶端的元素,但是从中间删除元素则稍慢些。
序列结构:
CvSeq
可动态增长元素序列(OpenCV_1.0已发生改变,详见cxtypes.h) Growable sequence of elements
#define CV_SEQUENCE_FIELDS() /
int flags; /* micsellaneous flags */ /
int header_size; /* size of sequence header */ /
struct CvSeq* h_prev; /* previous sequence */ /
struct CvSeq* h_next; /* next sequence */ /
struct CvSeq* v_prev; /* 2nd previous sequence */ /
struct CvSeq* v_next; /* 2nd next sequence */ /
int total; /* total number of elements */ /
int elem_size;/* size of sequence element in bytes */ /
char* block_max;/* maximal bound of the last block */ /
char* ptr; /* current write pointer */ /
int delta_elems; /* how many elements allocated when the sequence grows (sequence granularity) */ /
CvMemStorage* storage; /* where the seq is stored */ /
CvSeqBlock* free_blocks; /* free blocks list */ /
CvSeqBlock* first; /* pointer to the first sequence block */
typedef struct CvSeq
{
CV_SEQUENCE_FIELDS()
} CvSeq;
相关操作就不重复列出(排序,查找,逆序,拆分,复制,读取,写入切片的复制,移除,插入,),可以查找相关文档。
1.顶点的序列
用多个顶点(或各点间的线段)来表达轮廓。假设要表达一个从(0,0)到(2,2)的矩形,
(1)如果用点来表示,那么依次存储的可能是:(0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,1);
(2)如果用点间的线段来表达轮廓,那么依次存储的可能是:(0,0),(2,0),(2,2),(0,2)。
2.Freeman链码
Freeman链码需要一个起点,以及从起点出发的一系列位移。每个位移有8个方向,从0~7分别指向从正北开始的8个方向。假设要用Freeman链码表达从(0,0)到(2,2)的矩形,可能的表示方法是:起点(0,0),方向链2,2,4,4,6,6,0,0。
轮廓之间的组织方式
在查找到轮廓之后,不同轮廓是怎么组织的呢?根据不同的选择,它们可能是:(1)列表;(2)双层结构;(3)树型结构。
从纵向上来看,列表只有一层,双层结构有一或者两层,树型结构可能有一层或者多层。
如果要遍历所有的轮廓,可以使用递归的方式。
轮廓的绘制
轮廓的绘制比较简单,用上面提到的方法取得轮廓的所有点,然后把这些点连接成一个多边形即可。
轮廓的一个例子为:OpenCV_轮廓例子
上例中检测出输入图像的轮廓,然后逐个绘制每个轮廓。下个例子为:
在输入图像上寻找并绘制轮廓
轮廓的特性
轮廓的特性有很多,下面一一介绍。
1.轮廓的多边形逼近
轮廓的多边形逼近指的是:使用多边形来近似表示一个轮廓。
多边形逼近的目的是为了减少轮廓的顶点数目。
多边形逼近的结果依然是一个轮廓,只是这个轮廓相对要粗旷一些。
可以使用方法cvApproxPoly()
2.轮廓的关键点
轮廓的关键点是:轮廓上包含曲线信息比较多的点。关键点是轮廓顶点的子集。
可以使用cvFindDominantPoints函数来获取轮廓上的关键点,该函数返回的结果一个包含 关键点在轮廓顶点中索引 的序列。再次强调:是索引,不是具体的点。如果要得到关键点的具体坐标,可以用索引到轮廓上去找。
3.轮廓的周长和面积
轮廓的周长可以用cvContourPerimeter或者cvArcLength函数来获取。
轮廓的面积可以用cvContourArea函数来获取。
4.轮廓的边界框
有三种常见的边界框:矩形、圆形、椭圆。
(1)矩形:在图像处理系统中提供了一种叫Rectangle的矩形,不过它只能表达边垂直或水平的特例;OpenCv中还有一种叫Box的矩形,它跟数学上的矩形一致,只要4个角是直角即可。
如果要获取轮廓的Rectangle,可以使用cvBoundingRect函数。
如果要获取轮廓的Box,可以使用cvMinAreaRect2函数。
(2)圆形
如果要获取轮廓的圆形边界框,可以使用cvMinEnclosingCircle函数。
(3)椭圆
如果要获取轮廓的椭圆边界框,可以使用cvFitEllipse2函数。
5.轮廓的矩
矩是通过对轮廓上所有点进行积分运算(或者认为是求和运算)而得到的一个粗略特征。
在连续情况下,图像函数为 f(x,y),那么图像的p+q阶几何矩(标准矩)定义为:
p ,q = 0,1,2……
p+q阶中心距定义为:
p,q = 0,1,2……
其中和代表图像的重心,
,
对于离散的数字图像,采用求和号代替积分:
,,p,q = 0,1,2 ……
N和M分别是图像的高度和宽度;
归一化的中心距定义为:;其中
在公式中,p对应x维度上的矩,q对应y维度上的矩,阶数表示对应的部分的指数。该计算是对轮廓界上所有像素(数目为n)进行求和。如果p和q全部为0,那么m00实际上对应轮廓边界上点的数目。
虽然可以直接计算出轮廓的矩,但是经常会用到归一化的矩(因此不同大小但是形状相同的物体会有相同的值)。同样,简单的矩依赖于所选坐标系,这意味着物体旋转后就无法正确匹配。
于是就产生了Hu矩以及其他归一化矩的函数。
Hu矩是归一化中心矩的线性组合。之所以这样做是为了能够获取代表图像某个特征的矩函数。这些矩函数对缩放,旋转和镜像映射出了(h1)具有不变性。
Hu矩是从中心矩中计算得到。即七个由归一化中心矩组合成的矩:
其中中心矩和归一化中心矩的定义为:
我们可以使用cvContoursMoments函数、cvMoments函数方便的得到轮廓的矩集,然后再相应的方法或函数获取各种矩。
特定的矩:cvGetSpatialMoment函数
中心矩:cvGetCentralMoment函数
归一化中心矩:cvGetNormalizedCentralMoment函数
Hu矩:cvGetHuMoments函数
6.轮廓的轮廓树
轮廓树用来描述某个特定轮廓的内部特征。注意:轮廓树跟轮廓是一一对应的关系;轮廓树不用于描述多个轮廓之间的层次关系。
轮廓树的创建过程:
从一个轮廓创建一个轮廓树是从底端(叶子节点)到顶端(根节点)的。首先搜索三角形突出或者凹陷的形状的周边(轮廓上的每一个点都不是完全和它的相邻点共线的)每个这样的三角形被一条线段代替,这条线段通过连接非相邻点的两点得到;因此实际上三角形或者被削平或者被填满。每个这样的替换都把轮廓的顶点减少,并且给轮廓树创建一个新节点。如果这样的一个三角形的两侧有原始边,那么她就是得到的轮廓树的叶子;如果一侧已是一个三角形,那么它就是那个三角形的父节点。这个过程的迭代最终把物体的外形简称一个四边形,这个四边形也被剖开;得到的两个三角形是根节点的两个子节点。
结果的二分树最终将原始轮廓的形状性比编码。每个节点被它所对应的三角形的信息所注释。
这样建立的轮廓树并不太鲁棒,因为轮廓上小的改变也可能会彻底改变结果的树,同时最初的三角形是任意选取的。为了得到较好的描述需要首先使用函数cvApproxPoly()之后将轮廓排列(运用循环移动)成最初的三角形不怎么收到旋转影响的状态。
可以用函数cvCreateContourTree来构造轮廓树。
7.轮廓的凸包和凸缺陷
轮廓的凸包和凸缺陷用于描述物体的外形。凸包和凸缺陷很容易获得,不过我目前不知道它们到底怎么使用。
如果要判断轮廓是否是凸的,可以用cvCheckContourConvexity函数。
如果要获取轮廓的凸包,可以用cvConvexHull2函数,返回的是包含顶点的序列。
如果要获取轮廓的凸缺陷,可以用cvConvexityDefects函数。
8.轮廓的成对几何直方图
成对几何直方图(pairwise geometrical histogram PGH)是链码编码直方图(chain code histogram CCH)的一个扩展或者延伸。CCH是一种直方图,用来统计一个轮廓的Freeman链码编码每一种走法的数字。这种直方图的一个优良性质为当物体旋转45度,那么新直方图是老直方图的循环平移。这样就可以不受旋转影响。
(1)轮廓保存的是一系列的顶点,轮廓是由一系列线段组成的多边形。对于看起来光滑的轮廓(例如圆),只是线段条数比较多,线段长度比较短而已。实际上,电脑中显示的任何曲线都由线段组成。
(2)每两条线段之间都有一定的关系,包括它们(或者它们的延长线)之间的夹角,两条线段的夹角范围是:(0,180)。
(3)每两条线段上的点之间还有距离关系,包括最短(小)距离、最远(大)距离,以及平均距离。最大距离我用了一个偷懒的计算方法,我把轮廓外界矩形的对角线长度看作了最大距离。
(4)成对几何直方图所用的统计数据包括了夹角和距离。
轮廓的匹配
如果要比较两个物体,可供选择的特征很多。如果要判断某个人的性别,可以根据他(她)头发的长短来判断,这很直观,在长发男稀有的年代准确率也很高。也可以根据这个人尿尿的射程来判断,如果射程大于0.50米,则是男性。总之,方法很多,不一而足。
我们在上文中得到了轮廓的这么多特征,它们也可以用于进行匹配。典型的轮廓匹配方法有:Hu矩匹配、轮廓树匹配、成对几何直方图匹配。
1.Hu矩匹配
轮廓的Hu矩对包括缩放、旋转和镜像映射在内的变化具有不变性。cvMatchShapes函数可以很方便的实现对2个轮廓间的匹配。
2.轮廓树匹配
用树的形式比较两个轮廓。cvMatchContourTrees函数实现了轮廓树的对比。
3.成对几何直方图匹配
在得到轮廓的成对几何直方图之后,可以使用直方图对比的方法来进行匹配。