米勒罗宾素性测试(Miller–Rabin primality test)
如何判断一个素是素数 效率很高的筛法 打个表 (素数的倍数一定是合数) 就可以解决问题。
筛选法的效率很高,但是遇到大素数就无能为力了。
米勒罗宾素性测试是一个相当著名的判断是否是素数的算法
核心为费马小定理:
假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p
的余数恒等于1。
逆推一下即p的 a^(p-1)%p !=1 (0<a<p) ,它一定是合数。
如果 a^(p-1)%p ==1 (0<a<p) 则它可能是合数可能是素数。概率算法的概率就在这个 a上体现。
具体过程:
1 随机取一个 a
2 如果 它不满足 a^(n-1)%n ==1
3 则它一定是 合数
4 退出
5 如果它满足 a^(n-1)%n ==1
6 则它是一个素数的概率是1/2
7 回到 1
可以通过拉宾米勒素数测试的合数为伪素数与Carmichael(强伪素数)
Carmichael数是非常少的,在1~100000000范围内的整数中,只有255个Carmichael数。
为此有二次探测定理以确保该数为素数:
如果p是一个素数,0<x<p,则方程x^2≡1(mod p)的解为x=1,p-1
说明:
Miller-Rabin是随机算法
如果对这个过程重复100次,每次都没说它是合数,那这个数是素数的概率只有(1/2)^5100可能不是素数