tc 146 2 RectangularGrid(数学推导)

SRM 146 500RectangularGrid


Problem Statement

Given the width and height of a rectangular grid, return the total number of rectangles (NOT counting squares) that can be found on this grid.

For example, width = 3, height = 3 (see diagram below):

 __ __ __
|__|__|__|
|__|__|__|
|__|__|__|

In this grid, there are 4 2x3 rectangles, 6 1x3 rectangles and 12 1x2 rectangles. Thus there is a total of 4 + 6 + 12 = 22 rectangles. Note we don't count 1x1, 2x2 and 3x3 rectangles because they are squares.

Definition

  • ClassRectangularGrid
  • MethodcountRectangles
  • Parametersint , int
  • Returnslong long
  • Method signaturelong long countRectangles(int width, int height)
(be sure your method is public)

Limits

  • Time limit (s)2.000
  • Memory limit (MB)64

Notes

  • rectangles with equals sides (squares) should not be counted.

Constraints

  • width and height will be between 1 and 1000 inclusive.

Test cases

    1.  
      • width3
      • height3
       
      Returns22
       
      See above
    2.  
      • width5
      • height2
       
      Returns31
       
       __ __ __ __ __
      |__|__|__|__|__|
      |__|__|__|__|__|
      

      In this grid, there is one 2x5 rectangle, 2 2x4 rectangles, 2 1x5 rectangles, 3 2x3 rectangles, 4 1x4 rectangles, 6 1x3 rectangles and 13 1x2 rectangles. Thus there is a total of 1 + 2 + 2 + 3 + 4 + 6 + 13 = 31 rectangles.

    3.  
      • width10
      • height10
       
      Returns2640
    4.  
      • width1
      • height1
       
      Returns0
    5.  
      • width592
      • height964
       
      Returns81508708664
        1 #include <cstdio>
        2 #include <cmath>
        3 #include <cstring>
        4 #include <ctime>
        5 #include <iostream>
        6 #include <algorithm>
        7 #include <set>
        8 #include <vector>
        9 #include <sstream>
       10 #include <typeinfo>
       11 #include <fstream>
       12 
       13 using namespace std;
       14 typedef long long ll ;
       15 class RectangularGrid {
       16     public:
       17     long long countRectangles(int l , int r) {
       18         if (l > r) swap (l , r ) ;
       19       //  printf ("l = %d , r = %d\n" , l , r ) ;
       20         ll all = (1ll *l*l*r*r + 1ll *l*r*r + 1ll *r*l*l + 1ll *r*l) / 4 ;
       21         ll sum = 1ll * l * (l - 1) * (l + 1) / 3 + 1ll * (r - l + 1) * l * (l + 1) / 2 ;
       22      //   printf ("all = %lld , sum = %lld\n" , all , sum) ;
       23         return all - sum ;
       24     }
       25 };
       26 
       27 // CUT begin
       28 ifstream data("RectangularGrid.sample");
       29 
       30 string next_line() {
       31     string s;
       32     getline(data, s);
       33     return s;
       34 }
       35 
       36 template <typename T> void from_stream(T &t) {
       37     stringstream ss(next_line());
       38     ss >> t;
       39 }
       40 
       41 void from_stream(string &s) {
       42     s = next_line();
       43 }
       44 
       45 template <typename T>
       46 string to_string(T t) {
       47     stringstream s;
       48     s << t;
       49     return s.str();
       50 }
       51 
       52 string to_string(string t) {
       53     return "\"" + t + "\"";
       54 }
       55 
       56 bool do_test(int width, int height, long long __expected) {
       57     time_t startClock = clock();
       58     RectangularGrid *instance = new RectangularGrid();
       59     long long __result = instance->countRectangles(width, height);
       60     double elapsed = (double)(clock() - startClock) / CLOCKS_PER_SEC;
       61     delete instance;
       62 
       63     if (__result == __expected) {
       64         cout << "PASSED!" << " (" << elapsed << " seconds)" << endl;
       65         return true;
       66     }
       67     else {
       68         cout << "FAILED!" << " (" << elapsed << " seconds)" << endl;
       69         cout << "           Expected: " << to_string(__expected) << endl;
       70         cout << "           Received: " << to_string(__result) << endl;
       71         return false;
       72     }
       73 }
       74 
       75 int run_test(bool mainProcess, const set<int> &case_set, const string command) {
       76     int cases = 0, passed = 0;
       77     while (true) {
       78         if (next_line().find("--") != 0)
       79             break;
       80         int width;
       81         from_stream(width);
       82         int height;
       83         from_stream(height);
       84         next_line();
       85         long long __answer;
       86         from_stream(__answer);
       87 
       88         cases++;
       89         if (case_set.size() > 0 && case_set.find(cases - 1) == case_set.end())
       90             continue;
       91 
       92         cout << "  Testcase #" << cases - 1 << " ... ";
       93         if ( do_test(width, height, __answer)) {
       94             passed++;
       95         }
       96     }
       97     if (mainProcess) {
       98         cout << endl << "Passed : " << passed << "/" << cases << " cases" << endl;
       99         int T = time(NULL) - 1433920510;
      100         double PT = T / 60.0, TT = 75.0;
      101         cout << "Time   : " << T / 60 << " minutes " << T % 60 << " secs" << endl;
      102         cout << "Score  : " << 500 * (0.3 + (0.7 * TT * TT) / (10.0 * PT * PT + TT * TT)) << " points" << endl;
      103     }
      104     return 0;
      105 }
      106 
      107 int main(int argc, char *argv[]) {
      108     cout.setf(ios::fixed, ios::floatfield);
      109     cout.precision(2);
      110     set<int> cases;
      111     bool mainProcess = true;
      112     for (int i = 1; i < argc; ++i) {
      113         if ( string(argv[i]) == "-") {
      114             mainProcess = false;
      115         } else {
      116             cases.insert(atoi(argv[i]));
      117         }
      118     }
      119     if (mainProcess) {
      120         cout << "RectangularGrid (500 Points)" << endl << endl;
      121     }
      122     return run_test(mainProcess, cases, argv[0]);
      123 }
      124 // CUT end
      View Code

      已知一个长 l , 宽 r 的由1×1的单位矩阵构成的矩阵,问其中有多少个长方形?

      那么我们只要求出其中矩阵的总个数n , 和正方形数m,然后n - m就是答案。

      n= l*r + l×(r×(r-1))/2 + r×(l×(l-1))/2 + l×r×(l-1)×(r-1)/4

       =(l×l×r×r+l×r×r+r×l×l+r×l)/4;

      m=2×(1+2×3/2+4×3/2+……+l×(l-1)/2) + (r-l+1)×l×(l+1)/2;

       =l×(l+1)×(2×l+1)/6 + (r-l)×l×(l+1)/2;

      PS:

      1^2 + 2^2 + 3^2 + 4^2 + 5^2 +……+n^2 = n*(n + 1)*(2*n+1)/6;

      证明:(来自百度文库)

      想像一个有圆圈构成的正三角形,

      第一行1个圈,圈内的数字为1  

      第二行2个圈,圈内的数字都为2,

      以此类推

      第n行n个圈,圈内的数字都为n,

      我们要求的平方和,

      就转化为了求这个三角形所有圈内数字的和。

      设这个数为r  

      下面将这个三角形顺时针旋转120度,

      得到第二个三角形 

      再将第二个三角形顺时针旋转120度,得到第三个三角形.

       然后,将这三个三角形对应的圆圈内的数字相加,

      我们神奇的发现所有圈内的数字都变成了

      2n+1  

       而总共有几个圈呢,这是一个简单的等差数列求和

        1+2+……+n=n(n+1)/2 

       于是

      3r=[n(n+1)/2]*(2n+1)  

      r=n(n+1)(2n+1)/6 

        


posted @ 2015-06-11 14:27  92度的苍蓝  阅读(331)  评论(0编辑  收藏  举报
http://images.cnblogs.com/cnblogs_com/Running-Time/724426/o_b74124f376fc157f352acc88.jpg