The Bottom of a Graph(tarjan + 缩点)

The Bottom of a Graph
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 9139   Accepted: 3794

Description

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1in G and we say that vn+1 is reachable from v1, writing (v1→vn+1). 
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

Source

参考代码这里:http://blog.csdn.net/ehi11/article/details/7884851

缩点:(这个概念也是看了别人的理解)先求有向图的强连通分量 , 如果几个点同属于一个强连通 , 那就给它们标上相同的记号 , 这样这几个点的集合就形成了一个缩点。

 题目大意:求出度为0的强连通分量

 1 #include<stdio.h>
 2 #include<queue>
 3 #include<string.h>
 4 using namespace std;
 5 const int M = 50010 ;
 6 int n , m ;
 7 int stack [M] , top = 0 , index = 0;
 8 bool instack [M] ;
 9 int dfn[M] , low[M] ;
10 int cnt = 0 ;
11 vector <int> e[M] ;
12 int belong[M] ;
13 int out[M] ;
14 
15 void init (int n)
16 {
17     top = 0 ;
18     cnt = 0 ;
19     index = 0 ;
20     memset (stack , -1 , sizeof(stack)) ;
21     memset (instack , 0 , sizeof(instack)) ;
22     memset (dfn , -1 , sizeof(dfn)) ;
23     memset (low , -1 , sizeof(low)) ;
24     for (int i = 0 ; i <= n ; i++)
25         e[i].clear () ;
26     memset (belong , -1 , sizeof(belong)) ;
27     memset (out , 0 , sizeof(out)) ;
28 }
29 
30 void tarjan (int u)
31 {
32     int v ;
33     dfn[u] = low[u] = index++ ;
34     instack[u] = true ;
35     stack[++top] = u ;
36     for (int i = 0 ; i < e[u].size () ; i++) {
37         v = e[u][i] ;
38         if (dfn[v] == -1) {
39             tarjan (v) ;
40             low[u] = min (low[u] , low[v]) ;
41         }
42         else if (instack[v])
43             low[u] = min (low[u] , dfn[v]) ;
44     }
45     if (low[u] == dfn[u]) {
46         cnt++ ;
47         do {
48             v = stack[top--] ;
49             instack[v] = false ;
50             belong[v] = cnt ;
51         } while (u != v) ;
52     }
53 }
54 
55 int main ()
56 {
57    //freopen ("a.txt" , "r" , stdin) ;
58     int u , v ;
59     while (~ scanf ("%d" ,&n)) {
60         if (n == 0)
61             break ;
62         init (n) ;
63         scanf ("%d" , &m) ;
64         while (m--) {
65             scanf ("%d%d" , &u , &v) ;
66             e[u].push_back (v) ;
67         }
68         for (int i = 1 ; i <= n ; i++) {
69             if (dfn[i] == -1)
70                 tarjan (i) ;
71         }
72         for (int i = 1 ; i <= n ; i++) {
73             for (int j = 0 ; j < e[i].size () ; j++) {
74                 if (belong [i] != belong[e[i][j]])
75                     out[belong[i]] ++;
76             }
77         }
78         int k = 0 ;
79         for (int i = 1 ; i <= n ; i++) {
80             if (out[belong[i]] == 0) {
81                 if (k++)
82                     printf (" ") ;
83                 printf ("%d" , i) ;
84             }
85         }
86         puts ("") ;
87     }
88     return 0 ;
89 }
View Code

 

posted @ 2015-03-03 13:16  92度的苍蓝  阅读(228)  评论(0编辑  收藏  举报
http://images.cnblogs.com/cnblogs_com/Running-Time/724426/o_b74124f376fc157f352acc88.jpg