Python: faces Swap
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | # encoding: utf-8 # 版权所有 2024 涂聚文有限公司 # 许可信息查看:pip install boost # 描述:pip install boost # pip install dlib # pip install cmake==3.25.2 # pip install dlib==19.24.2 如果安装不上,按此法 # Author : geovindu,Geovin Du 涂聚文. # IDE : PyCharm 2023.1 python 3.11 # Datetime : 2024/6/13 22:09 # User : geovindu # Product : PyCharm # Project : pyBaiduAi # File : FaceSwaFun.py # explain : 学习 import cv2 import numpy as np import dlib from PIL import Image as im class FaceSwaFun( object ): """ 换脸类 """ def __init__( self , SOURCEPATH, DESTPATH): """ 实例化 :param SOURCEPATH: 需要用脸的图片 :param DESTPATH: 用脸目标图片 """ self .SOURCE_PATH = SOURCEPATH self .DEST_PATH = DESTPATH def index_from_array( self , numpyarray): """ :param numpyarray: :return: """ index = None for n in numpyarray[ 0 ]: index = n break return index def getImage( self ) - > tuple : """ :return: 返回 (图片的数组,保存的文件名) """ frontal_face_detector = dlib.get_frontal_face_detector() frontal_face_predictor = dlib.shape_predictor( "dataset/shape_predictor_68_face_landmarks.dat" ) source_image = cv2.imread( self .SOURCE_PATH) source_image_grayscale = cv2.cvtColor(source_image, cv2.COLOR_BGR2GRAY) # destination_image = cv2.imread( self .DEST_PATH) destination_image_grayscale = cv2.cvtColor(destination_image, cv2.COLOR_BGR2GRAY) source_image_canvas = np.zeros_like(source_image_grayscale) height, width, no_of_channels = destination_image.shape destination_image_canvas = np.zeros((height, width, no_of_channels), np.uint8) source_faces = frontal_face_detector(source_image_grayscale) # Obtaining source face landmark points, convex hull, creating mask and also getting delaunay triangle face landmark indices for every face for source_face in source_faces: source_face_landmarks = frontal_face_predictor(source_image_grayscale, source_face) source_face_landmark_points = [] for landmark_no in range ( 68 ): x_point = source_face_landmarks.part(landmark_no).x y_point = source_face_landmarks.part(landmark_no).y source_face_landmark_points.append((x_point, y_point)) source_face_landmark_points_array = np.array(source_face_landmark_points, np.int32) source_face_convexhull = cv2.convexHull(source_face_landmark_points_array) cv2.fillConvexPoly(source_image_canvas, source_face_convexhull, 255 ) source_face_image = cv2.bitwise_and(source_image, source_image, mask = source_image_canvas) # DELAUNAY TRIANGULATION bounding_rectangle = cv2.boundingRect(source_face_convexhull) subdivisions = cv2.Subdiv2D(bounding_rectangle) subdivisions.insert(source_face_landmark_points) triangles_vector = subdivisions.getTriangleList() triangles_array = np.array(triangles_vector, dtype = np.int32) triangle_landmark_points_list = [] source_face_image_copy = source_face_image.copy() for triangle in triangles_array: index_point_1 = (triangle[ 0 ], triangle[ 1 ]) index_point_2 = (triangle[ 2 ], triangle[ 3 ]) index_point_3 = (triangle[ 4 ], triangle[ 5 ]) index_1 = np.where((source_face_landmark_points_array = = index_point_1). all (axis = 1 )) index_1 = self .index_from_array(index_1) index_2 = np.where((source_face_landmark_points_array = = index_point_2). all (axis = 1 )) index_2 = self .index_from_array(index_2) index_3 = np.where((source_face_landmark_points_array = = index_point_3). all (axis = 1 )) index_3 = self .index_from_array(index_3) triangle = [index_1, index_2, index_3] triangle_landmark_points_list.append(triangle) destination_faces = frontal_face_detector(destination_image_grayscale) # Obtaining destination face landmark points and also convex hull for every face for destination_face in destination_faces: destination_face_landmarks = frontal_face_predictor(destination_image_grayscale, destination_face) destination_face_landmark_points = [] for landmark_no in range ( 68 ): x_point = destination_face_landmarks.part(landmark_no).x y_point = destination_face_landmarks.part(landmark_no).y destination_face_landmark_points.append((x_point, y_point)) destination_face_landmark_points_array = np.array(destination_face_landmark_points, np.int32) destination_face_convexhull = cv2.convexHull(destination_face_landmark_points_array) # Iterating through all source delaunay triangle and superimposing source triangles in empty destination canvas after warping to same size as destination triangles' shape for i, triangle_index_points in enumerate (triangle_landmark_points_list): # Cropping source triangle's bounding rectangle source_triangle_point_1 = source_face_landmark_points[triangle_index_points[ 0 ]] source_triangle_point_2 = source_face_landmark_points[triangle_index_points[ 1 ]] source_triangle_point_3 = source_face_landmark_points[triangle_index_points[ 2 ]] source_triangle = np.array([source_triangle_point_1, source_triangle_point_2, source_triangle_point_3], np.int32) source_rectangle = cv2.boundingRect(source_triangle) (x, y, w, h) = source_rectangle cropped_source_rectangle = source_image[y:y + h, x:x + w] source_triangle_points = np.array([[source_triangle_point_1[ 0 ] - x, source_triangle_point_1[ 1 ] - y], [source_triangle_point_2[ 0 ] - x, source_triangle_point_2[ 1 ] - y], [source_triangle_point_3[ 0 ] - x, source_triangle_point_3[ 1 ] - y]], np.int32) # Create a mask using cropped destination triangle's bounding rectangle(for same landmark points as used for source triangle) destination_triangle_point_1 = destination_face_landmark_points[triangle_index_points[ 0 ]] destination_triangle_point_2 = destination_face_landmark_points[triangle_index_points[ 1 ]] destination_triangle_point_3 = destination_face_landmark_points[triangle_index_points[ 2 ]] destination_triangle = np.array( [destination_triangle_point_1, destination_triangle_point_2, destination_triangle_point_3], np.int32) destination_rectangle = cv2.boundingRect(destination_triangle) (x, y, w, h) = destination_rectangle cropped_destination_rectangle_mask = np.zeros((h, w), np.uint8) destination_triangle_points = np.array( [[destination_triangle_point_1[ 0 ] - x, destination_triangle_point_1[ 1 ] - y], [destination_triangle_point_2[ 0 ] - x, destination_triangle_point_2[ 1 ] - y], [destination_triangle_point_3[ 0 ] - x, destination_triangle_point_3[ 1 ] - y]], np.int32) cv2.fillConvexPoly(cropped_destination_rectangle_mask, destination_triangle_points, 255 ) # Warp source triangle to match shape of destination triangle and put it over destination triangle mask source_triangle_points = np.float32(source_triangle_points) destination_triangle_points = np.float32(destination_triangle_points) matrix = cv2.getAffineTransform(source_triangle_points, destination_triangle_points) warped_rectangle = cv2.warpAffine(cropped_source_rectangle, matrix, (w, h)) warped_triangle = cv2.bitwise_and(warped_rectangle, warped_rectangle, mask = cropped_destination_rectangle_mask) # Reconstructing destination face in empty canvas of destination image # removing white lines in triangle using masking new_dest_face_canvas_area = destination_image_canvas[y:y + h, x:x + w] new_dest_face_canvas_area_gray = cv2.cvtColor(new_dest_face_canvas_area, cv2.COLOR_BGR2GRAY) _, mask_created_triangle = cv2.threshold(new_dest_face_canvas_area_gray, 1 , 255 , cv2.THRESH_BINARY_INV) warped_triangle = cv2.bitwise_and(warped_triangle, warped_triangle, mask = mask_created_triangle) new_dest_face_canvas_area = cv2.add(new_dest_face_canvas_area, warped_triangle) destination_image_canvas[y:y + h, x:x + w] = new_dest_face_canvas_area # Put reconstructed face on the destination image final_destination_canvas = np.zeros_like(destination_image_grayscale) final_destination_face_mask = cv2.fillConvexPoly(final_destination_canvas, destination_face_convexhull, 255 ) final_destination_canvas = cv2.bitwise_not(final_destination_face_mask) destination_face_masked = cv2.bitwise_and(destination_image, destination_image, mask = final_destination_canvas) destination_with_face = cv2.add(destination_face_masked, destination_image_canvas) # Seamless cloning to make attachment blend with surrounding pixels # we have to find center point of reconstructed convex hull to pass into seamlessClone() (x, y, w, h) = cv2.boundingRect(destination_face_convexhull) destination_face_center_point = ( int ((x + x + w) / 2 ), int ((y + y + h) / 2 )) seamless_cloned_face = cv2.seamlessClone(destination_with_face, destination_image, final_destination_face_mask, destination_face_center_point, cv2.NORMAL_CLONE) data = im.fromarray(seamless_cloned_face) # saving the final output # as a PNG file file = 'geovindu.png' data.save( file ) # cv2.imshow("Destination image with source face 2", seamless_cloned_face) # cv2.waitKey(0) # cv2.destroyAllWindows() print ( type (seamless_cloned_face)) return (seamless_cloned_face, file ) ''' 1. import cv2 cv2.imwrite("geovindu.jpg", seamless_cloned_face) 2. from PIL import Image im = Image.fromarray(seamless_cloned_face) im.save("geovindu.jpg") 3. import scipy.misc scipy.misc.imsave('geovindu.jpg', seamless_cloned_face) 4. import scipy.misc scipy.misc.toimage(seamless_cloned_face, cmin=0.0, cmax=...).save('geovindu.jpg') 5. import matplotlib matplotlib.image.imsave('geovindu.png', seamless_cloned_face) ''' |
调用:
1 2 3 4 5 6 7 | # 调用 du = BLL.imageFaceSwapFun.FaceSwaFun( "media/images/modi.jpg" , "media/images/viplav.jpeg" ) #du.SOURCE_PATH="media/images/modi.jpg" # du.DEST_PATH="media/images/viplav.jpeg" geovindu = du.getImage() print (geovindu) cv2.imwrite( "geovindu20.png" , geovindu[ 0 ]) |
哲学管理(学)人生, 文学艺术生活, 自动(计算机学)物理(学)工作, 生物(学)化学逆境, 历史(学)测绘(学)时间, 经济(学)数学金钱(理财), 心理(学)医学情绪, 诗词美容情感, 美学建筑(学)家园, 解构建构(分析)整合学习, 智商情商(IQ、EQ)运筹(学)生存.---Geovin Du(涂聚文)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 零经验选手,Compose 一天开发一款小游戏!
· 一起来玩mcp_server_sqlite,让AI帮你做增删改查!!
2023-06-13 python: read excel
2019-06-13 MIME Types
2007-06-13 查询ID第五条至第十五条记录(SQL server2000)